Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pauli matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Completeness relation<span class="anchor" id="completeness_anchor"></span> === An alternative notation that is commonly used for the Pauli matrices is to write the vector index {{mvar|k}} in the superscript, and the matrix indices as subscripts, so that the element in row {{mvar|α}} and column {{mvar|β}} of the {{mvar|k}}-th Pauli matrix is {{math|''σ {{sup|k}}{{sub|αβ}}''.}} In this notation, the ''completeness relation'' for the Pauli matrices can be written :<math>\vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta}\equiv \sum_{k=1}^3 \sigma^k_{\alpha\beta}\,\sigma^k_{\gamma\delta} = 2\,\delta_{\alpha\delta} \,\delta_{\beta\gamma} - \delta_{\alpha\beta}\,\delta_{\gamma\delta}.</math> {{math proof | proof = The fact that the Pauli matrices, along with the identity matrix {{mvar|I}}, form an orthogonal basis for the Hilbert space of all 2 × 2 [[complex number|complex]] matrices <math>\mathcal{M}_{2,2}(\mathbb{C})</math> over <math>\mathbb{C}</math>, means that we can express any 2 × 2 complex matrix {{mvar|M}} as <math display="block">M = c\,I + \sum_k a_k \,\sigma^k </math> where {{mvar|c}} is a complex number, and {{mvar|a}} is a 3-component, complex vector. It is straightforward to show, using the properties listed above, that <math display="block">\operatorname{tr}\left( \sigma^j\,\sigma^k \right) = 2\,\delta_{jk}</math> where "{{math|tr}}" denotes the [[trace (linear algebra)|trace]], and hence that <math display="block">\begin{align} c &={} \tfrac{1}{2}\, \operatorname{tr}\, M\,,\begin{align}&& a_k &= \tfrac{1}{2}\,\operatorname{tr}\,\sigma^k\,M .\end{align} \\[3pt] \therefore ~~ 2\,M &= I\,\operatorname{tr}\, M + \sum_k \sigma^k\,\operatorname{tr}\, \sigma^k M ~, \end{align}</math> which can be rewritten in terms of matrix indices as <math display="block">2\, M_{\alpha\beta} = \delta_{\alpha\beta}\,M_{\gamma\gamma} + \sum_k \sigma^k_{\alpha\beta}\,\sigma^k_{\gamma\delta}\,M_{\delta\gamma}~,</math> where [[Einstein notation|summation over the repeated indices is implied]] {{mvar|γ}} and {{mvar|δ}}. Since this is true for any choice of the matrix {{mvar|M}}, the completeness relation follows as stated above. [[Q.E.D.]] }} As noted above, it is common to denote the 2 × 2 unit matrix by {{math|''σ''{{sub|0}},}} so {{math|1=''σ{{sup|0}}{{sub|αβ}}'' = ''δ{{sub|αβ}}''.}} The completeness relation can alternatively be expressed as <math display="block">\sum_{k=0}^3 \sigma^k_{\alpha\beta}\,\sigma^k_{\gamma\delta} = 2\,\delta_{\alpha\delta}\,\delta_{\beta\gamma} ~ .</math> The fact that any Hermitian [[complex number|complex]] 2 × 2 matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the [[Bloch sphere]] representation of 2 × 2 [[mixed state (physics)|mixed state]]s’ density matrix, ([[Positive semidefinite matrix|positive semidefinite]] 2 × 2 matrices with unit trace. This can be seen by first expressing an arbitrary Hermitian matrix as a real linear combination of {{math|{''σ''{{sub|0}}, ''σ''{{sub|1}}, ''σ''{{sub|2}}, ''σ''{{sub|3}}<nowiki>}</nowiki>}} as above, and then imposing the positive-semidefinite and [[Trace (linear algebra)|trace]] {{math|1}} conditions. For a pure state, in polar coordinates, <math display="block">\vec{a} = \begin{pmatrix}\sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta\end{pmatrix},</math> the [[idempotent]] density matrix <math display="block"> \tfrac{1}{2} \left(\mathbf{1} + \vec{a} \cdot \vec{\sigma}\right) = \begin{pmatrix} \cos^2\left(\frac{\,\theta\,}{2}\right) & e^{-i\,\phi}\sin\left(\frac{\,\theta\,}{2}\right)\cos\left(\frac{\,\theta\,}{2}\right) \\ e^{+i\,\phi}\sin\left(\frac{\,\theta\,}{2}\right)\cos\left(\frac{\,\theta\,}{2}\right) & \sin^2\left(\frac{\,\theta\,}{2}\right) \end{pmatrix} </math> acts on the state eigenvector <math>\begin{pmatrix}\cos\left(\frac{\,\theta\,}{2}\right) & e^{+i\phi}\,\sin\left(\frac{\,\theta\,}{2}\right) \end{pmatrix} </math> with eigenvalue +1, hence it acts like a [[projection (linear algebra)|projection operator]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)