Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permian–Triassic extinction event
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Volcanism === ====Siberian Traps==== The flood basalt eruptions that produced the [[large igneous province]] of the [[Siberian Traps]] were among the largest known volcanic events, extruding lava over {{convert|2000000|km2|sqmi}}, roughly the size of Saudi Arabia, producing a catastrophic impact.<ref>{{cite web|author1=Andy Saunders |author2=Marc Reichow |year=2009|title=The Siberian Traps – area and volume |url=http://www.le.ac.uk/gl/ads/SiberianTraps/AreaVolume.html|access-date=2009-10-18}}</ref><ref>{{cite web|year=2023|title=Largest Countries in the World (by area)|url=https://www.worldometers.info/geography/largest-countries-in-the-world/|access-date=2023-05-25}}</ref><ref>{{cite journal |title = The Siberian Traps and the End-Permian mass extinction: a critical review |journal = [[Chinese Science Bulletin]]|volume = 54 |issue = 1 |pages = 20–37 |date = January 2009 |url = http://www.le.ac.uk/gl/ads/SiberianTraps/PDF%20Files/The%20Siberian%20Traps%20and%20the%20End-Permian%20mass.pdf |author1=Saunders, Andy |author2=Reichow, Marc |name-list-style=amp |doi =10.1007/s11434-008-0543-7 |bibcode=2009ChSBu..54...20S |hdl = 2381/27540 |s2cid = 1736350 |hdl-access = free }}</ref><ref>{{cite journal |last1=Reichow |first1=Marc K. |last2=Pringle |first2=M.S. |last3=Al'Mukhamedov |first3=A.I. |last4=Allen |first4=M.B. |last5=Andreichev |first5=V.L. |last6=Buslov |first6=M.M. |last7=Davies |first7=C.E. |last8=Fedoseev |first8=G.S. |last9=Fitton |first9=J.G. |last10=Inger |first10=S. |last11=Medvedev |first11=A.Ya. |last12=Mitchell |first12=C. |last13=Puchkov |first13=V.N. |last14=Safonova |first14=I.Yu. |last15=Scott |first15=R.A. |last16=Saunders |first16=A.D. |display-authors=6 |year=2009 |title= The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis|journal= [[Earth and Planetary Science Letters]] |volume= 277 |issue= 1–2|pages= 9–20 |url= http://www.le.ac.uk/gl/ads/SiberianTraps/PDF%20Files/Reichow%20et%20al.%202009.pdf |doi =10.1016/j.epsl.2008.09.030 |bibcode=2009E&PSL.277....9R|hdl=2381/4204|hdl-access=free}}</ref><ref>{{cite journal |last1=Augland |first1=L. E. |last2=Ryabov |first2=V. V. |last3=Vernikovsky |first3=V. A. |last4=Planke |first4=S. |last5=Polozov |first5=A. G. |last6=Callegaro |first6=S. |last7=Jerram |first7=D. A. |last8=Svensen |first8=H. H. |date=10 December 2019 |title=The main pulse of the Siberian Traps expanded in size and composition |journal=[[Scientific Reports]] |volume=9 |issue=1 |page=18723 |doi=10.1038/s41598-019-54023-2 |pmid=31822688 |pmc=6904769 |bibcode=2019NatSR...918723A }}</ref> The date of the Siberian Traps eruptions matches well with the extinction event.<ref name="Burgess-2014" /><ref>{{Cite journal |title = Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma|last = Kamo |first = SL |year=2003 |journal=[[Earth and Planetary Science Letters]] |doi = 10.1016/S0012-821X(03)00347-9 |bibcode=2003E&PSL.214...75K |volume=214 |issue = 1–2 |pages=75–91}}</ref><ref>{{Cite journal |last1=Black |first1=Benjamin A. |last2=Weiss |first2=Benjamin P. |last3=Elkins-Tanton |first3=Linda T. |last4=Veselovskiy |first4=Roman V. |last5=Latyshev |first5=Anton |date=30 April 2015 |title=Siberian Traps volcaniclastic rocks and the role of magma-water interactions |journal=[[Geological Society of America Bulletin]] |language=en |volume=127 |issue=9–10 |page=B31108.1 |bibcode=2015GSAB..127.1437B |doi=10.1130/B31108.1 |issn=0016-7606}}</ref><ref name="HighPrecisionGeochronology">{{Cite journal |last1=Burgess |first1=Seth D. |last2=Bowring |first2=Samuel A. |date=1 August 2015 |title=High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction |journal=[[Science Advances]] |language=en |volume=1 |issue=7 |page=e1500470 |bibcode=2015SciA....1E0470B |doi=10.1126/sciadv.1500470 |issn=2375-2548 |pmc=4643808 |pmid=26601239}}</ref><ref>{{cite AV media |title=Giant eruptions and giant extinctions |medium=video |last=Fischman |first=Josh |website=Scientific American |url=http://www.scientificamerican.com/article/giant-eruptions-and-giant-extinctions-video/ |access-date=2016-03-11}}</ref> A study of the Norilsk and Maymecha-Kotuy regions of the northern Siberian platform indicates that volcanic activity occurred during a few enormous pulses of magma, as opposed to more regular flows.<ref>{{cite journal |last1=Pavlov |first1=Vladimir E. |last2=Fluteau |first2=Frederic |last3=Latyshev |first3=Anton V. |last4=Fetisova |first4=Anna M. |last5=Elkins-Tanton |first5=Linda T. |last6=Black |first6=Ben A. |last7=Burgess |first7=Seth D. |last8=Veselovskiy |first8=Roman V. |date=17 January 2019 |title=Geomagnetic Secular Variations at the Permian-Triassic Boundary and Pulsed Magmatism During Eruption of the Siberian Traps |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GC007950 |journal=[[Geochemistry, Geophysics, Geosystems]] |volume=20 |issue=2 |pages=773–791 |doi=10.1029/2018GC007950 |bibcode=2019GGG....20..773P |s2cid=134521010 |access-date=20 February 2023}}</ref> The Siberian Traps caused one of the most rapid rises of atmospheric carbon dioxide levels in the geologic record,<ref name="VolumeRateCO2">{{cite journal |last1=Jiang |first1=Qiang |last2=Jourdan |first2=Fred |last3=Olierook |first3=Hugo K. H. |last4=Merle |first4=Renaud E. |last5=Bourdet |first5=Julien |last6=Fougerouse |first6=Denis |last7=Godel |first7=Belinda |last8=Walker |first8=Alex T. |date=25 July 2022 |title=Volume and rate of volcanic {{CO2}} emissions governed the severity of past environmental crises |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=119 |issue=31 |pages=e2202039119 |doi=10.1073/pnas.2202039119 |doi-access=free |pmid=35878029 |pmc=9351498 |bibcode=2022PNAS..11902039J }}</ref> with the rate of carbon dioxide emissions estimated as five times faster than during the preceding catastrophic [[Capitanian mass extinction event|Capitanian mass extinction]]<ref>{{cite journal |last1=Wang |first1=Wen-qian |last2=Zheng |first2=Feifei |last3=Zhang |first3=Shuang |last4=Cui |first4=Ying |last5=Zheng |first5=Quan-feng |last6=Zhang |first6=Yi-chun |last7=Chang |first7=Dong-xun |last8=Zhang |first8=Hua |last9=Xu |first9=Yi-gang |last10=Shen |first10=Shu-zhong |date=15 January 2023 |title=Ecosystem responses of two Permian biocrises modulated by {{CO2}} emission rates |journal=[[Earth and Planetary Science Letters]] |volume=602 |page=117940 |doi=10.1016/j.epsl.2022.117940 |bibcode=2023E&PSL.60217940W |s2cid=254660567 |doi-access=free }}</ref> during the eruption of the [[Emeishan Traps]].<ref name="wignalletal">{{cite journal | url=https://www.science.org/doi/10.1126/science.1171956 | doi=10.1126/science.1171956 | title=Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China | year=2009 | last1=Wignall | first1=Paul Barry | last2=Sun | first2=Yadong | last3=Bond | first3=David P. G. | last4=Izon | first4=Gareth | last5=Newton | first5=Robert J. | last6=Védrine | first6=Stéphanie | last7=Widdowson | first7=Mike | last8=Ali | first8=Jason R. | last9=Lai | first9=Xulong | last10=Jiang | first10=Haishui | last11=Cope | first11=Helen | last12=Bottrell | first12=Simon H. | journal=[[Science (journal)|Science]] | volume=324 | issue=5931 | pages=1179–1182 | pmid=19478179 | bibcode=2009Sci...324.1179W | s2cid=206519019 |access-date=20 February 2023| url-access=subscription }}</ref><ref name="JerramEtAl2016PPP">{{cite journal |last1=Jerram |first1=Dougal A. |last2=Widdowson |first2=Mike |last3=Wignall |first3=Paul Barry |last4=Sun |first4=Yadong |last5=Lai |first5=Xulong |last6=Bond |first6=David P. G. |last7=Torsvik |first7=Trond H. |date=1 January 2016 |title=Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume–lithosphere interaction during the Capitanian, Middle Permian ('end Guadalupian') extinction event |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018215003065 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=441 |pages=65–73 |doi=10.1016/j.palaeo.2015.06.009 |bibcode=2016PPP...441...65J |access-date=19 December 2022}}</ref><ref>{{cite journal |last1=Zhou |first1=Mei-Fu |last2=Malpas |first2=John |last3=Song |first3=Xie-Yan |last4=Robinson |first4=Paul T. |last5=Sun |first5=Min |last6=Kennedy |first6=Allen K. |last7=Lesher |first7=C. Michael |last8=Keays |first8=Ride R. |date=15 March 2002 |title=A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X01006082 |journal=[[Earth and Planetary Science Letters]] |volume=196 |issue=3–4 |pages=113–122 |doi=10.1016/S0012-821X(01)00608-2 |bibcode=2002E&PSL.196..113Z |access-date=20 February 2023|url-access=subscription }}</ref> Overwhelming inorganic [[carbon sink]]s, carbon dioxide levels might have jumped from between 500 and 4,000 ppm prior to the extinction to around 8,000 ppm after, according to one estimate.<ref name="GlobalWarmingAndEPME">{{cite journal |last1=Cui |first1=Ying |last2=Kump |first2=Lee R. |title=Global warming and the end-Permian extinction event: Proxy and modeling perspectives |journal=[[Earth-Science Reviews]] |date=October 2015 |volume=149 |pages=5–22 |doi=10.1016/j.earscirev.2014.04.007 |doi-access=free |bibcode=2015ESRv..149....5C}}</ref> Another study estimated pre-extinction carbon dioxide levels at 400 ppm, which then rose to 2,500 ppm, with 3,900 to 12,000 gigatonnes of carbon added to the ocean-atmosphere system.<ref name="WuEtAl2021NatureCommunications" /> [[Greenhouse effect|Extreme temperature rise]] would have followed,<ref name="White" /> though some evidence suggests a lag of 12,000 to 128,000 years between the rise in volcanic carbon dioxide emissions and global warming.<ref>{{cite journal |last1=Joachimski |first1=Michael M. |last2=Alekseev |first2=A. S. |last3=Grigoryan |first3=A. |last4=Gatovsky |first4=Yu. A. |date=17 June 2019 |title=Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections |url=https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/132/1-2/427/571663/Siberian-Trap-volcanism-global-warming-and-the?redirectedFrom=fulltext |journal=[[Geological Society of America Bulletin]] |volume=132 |issue=1–2 |pages=427–443 |doi=10.1130/B35108.1 |s2cid=197561486 |access-date=26 May 2023|url-access=subscription }}</ref> Although this discrepancy could be also attributed to a incorrect [[biochronology]].<ref>{{Cite journal |last1=Horacek |first1=Micha |last2=Krystyn |first2=Leopold |last3=Baud |first3=Aymon |date=2021-07-23 |title=Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections: Comment |url=https://pubs.geoscienceworld.org/gsa/gsabulletin/article/134/3-4/1085/606373/Siberian-Trap-volcanism-global-warming-and-the |journal=GSA Bulletin |volume=134 |issue=3–4 |pages=1085–1086 |doi=10.1130/B36099.1 |issn=0016-7606}}</ref> During the latest Permian before the extinction, global average surface temperatures were about 18.2 °C,<ref>{{cite journal |last1=Kenny |first1=Ray |date=16 January 2018 |title=A geochemical view into continental palaeotemperatures of the end-Permian using oxygen and hydrogen isotope composition of secondary silica in chert rubble breccia: Kaibab Formation, Grand Canyon (USA) |journal=Geochemical Transactions |volume=19 |issue=2 |page=2 |doi=10.1186/s12932-017-0047-y |pmid=29340852 |pmc=5770344 |bibcode=2018GeoTr..19....2K |doi-access=free }}</ref> which shot up to as much as 35 °C, this hyperthermal condition lasting as long as 500,000 years.<ref name="WuEtAl2021NatureCommunications" /> Air temperatures at Gondwana's high southern latitudes experienced a warming of ~10–14 °C.<ref name="PaceMagnitudeNatureTerrestrialClimateChange">{{cite journal |last1=Frank |first1=T. D. |last2=Fielding |first2=Christopher R. |last3=Winguth |first3=A. M. E. |last4=Savatic |first4=K. |last5=Tevyaw |first5=A. |last6=Winguth |first6=C. |last7=McLoughlin |first7=Stephen |last8=Vajda |first8=Vivi |last9=Mays |first9=C. |last10=Nicoll |first10=R. |last11=Bocking |first11=M. |last12=Crowley |first12=J. L. |date=19 May 2021 |title=Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana |url=https://pubs.geoscienceworld.org/gsa/geology/article/49/9/1089/598763/Pace-magnitude-and-nature-of-terrestrial-climate |journal=[[Geology (journal)|Geology]] |volume=49 |issue=9 |pages=1089–1095 |doi=10.1130/G48795.1 |bibcode=2021Geo....49.1089F |s2cid=236381390 |access-date=2024-03-26}}</ref> According to oxygen isotope shifts from conodont apatite in South China, low latitude surface water temperatures surged about 8 °C.<ref name="ClimateWarming">{{cite journal |last1=Joachimski |first1=Michael M. |last2=Lai |first2=Xulong |last3=Shen |first3=Shuzhong |last4=Jiang |first4=Haishui |last5=Luo |first5=Genming |last6=Chen |first6=Bo |last7=Chen |first7=Jun |last8=Sun |first8=Yadong |date=1 March 2012 |title=Climate warming in the latest Permian and the Permian–Triassic mass extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/40/3/195/130777/Climate-warming-in-the-latest-Permian-and-the?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=40 |issue=3 |pages=195–198 |doi=10.1130/G32707.1 |bibcode=2012Geo....40..195J |access-date=2024-03-26|url-access=subscription }}</ref> In present-day Iran, tropical sea surface temperatures were between 27 and 33 °C during the Changhsingian but jumped to over 35 °C during the PTME.<ref>{{cite journal |last1=Schobben |first1=Martin |last2=Joachimski |first2=Michael M. |last3=Korn |first3=Dieter |last4=Leda |first4=Lucyna |last5=Korte |first5=Christoph |date=September 2014 |title=Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S1342937X13002694 |journal=[[Gondwana Research]] |volume=26 |issue=2 |pages=675–683 |doi=10.1016/j.gr.2013.07.019 |bibcode=2014GondR..26..675S |access-date=31 May 2023|url-access=subscription }}</ref> The increased mean state temperatures also brought stronger [[El Niño–Southern Oscillation|El Nino]] events, heightening short-term climate variability.<ref name=Sun2024>{{cite journal|author1=Yadong Sun|author2=Alexander Farnsworth|author3=Michael M. Joachimski|author4=Paul Barry Wignall|author5=Leopold Krystyn|author6=David P. G. Bond|author7=Domenico C. G. Ravidà|author8=Paul J. Valdes|date=September 12, 2024|title=Mega El Niño instigated the end-Permian mass extinction|journal=[[Science (journal)|Science]]|volume=385|issue=6714|pages=1189–1195 |doi=10.1126/science.ado2030|pmid=39265011 |bibcode=2024Sci...385.1189S |url=https://hull-repository.worktribe.com/file/4785016/1/Accepted%20manuscript |language=en}}</ref> These extremely high atmospheric carbon dioxide concentrations persisted over a long period.<ref>{{cite journal |last1=Kump |first1=Lee R. |date=3 September 2018 |title=Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation? |journal=[[Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences]] |volume=376 |issue=2130 |pages=1–9 |doi=10.1098/rsta.2017.0078 |pmid=30177562 |pmc=6127386 |bibcode=2018RSPTA.37670078K |s2cid=52152614 }}</ref> The position and alignment of Pangaea at the time made the inorganic carbon cycle very inefficient at burying carbon.<ref>{{cite journal |last1=Zhang |first1=Hongrui |last2=Torsvik |first2=Trond H. |date=15 April 2022 |title=Circum-Tethyan magmatic provinces, shifting continents and Permian climate change |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X22000899 |journal=[[Earth and Planetary Science Letters]] |volume=584 |page=117453 |doi=10.1016/j.epsl.2022.117453 |bibcode=2022E&PSL.58417453Z |s2cid=247298020 |access-date=31 May 2023|url-access=subscription }}</ref> In a 2020 paper, scientists reconstructed the mechanisms that led to the extinction event in a [[Biogeochemical cycle#Important cycles|biogeochemical]] model, showed the consequences of the [[greenhouse effect]] on the marine environment, and concluded that the mass extinction can be traced back to volcanic CO{{sub|2}} emissions.<ref>{{cite news |title=Driver of the largest mass extinction in the history of the Earth identified |website=phys.org |language=en |url=https://phys.org/news/2020-10-driver-largest-mass-extinction-history.html |access-date=8 November 2020}}</ref><ref name="Jurikova2020">{{cite journal |last1=Jurikova |first1=Hana |last2=Gutjahr |first2=Marcus |last3=Wallmann |first3=Klaus |last4=Flögel |first4=Sascha |last5=Liebetrau |first5=Volker |last6=Posenato |first6=Renato |last7=Angiolini |first7=Lucia |last8=Garbelli |first8=Claudio |last9=Brand |first9=Uwe |last10=Wiedenbeck |first10=Michael |last11=Eisenhauer |first11=Anton |display-authors=6 |title=Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations |journal=[[Nature Geoscience]] |date=November 2020 |volume=13 |issue=11 |pages=745–750 |doi=10.1038/s41561-020-00646-4 |bibcode=2020NatGe..13..745J |s2cid=224783993 |url=https://www.nature.com/articles/s41561-020-00646-4 |access-date=8 November 2020 |language=en |issn=1752-0908|hdl=11573/1707839 |hdl-access=free }}</ref> Evidence also points to volcanic combustion of underground fossil fuel deposits, based on paired [[Coronene#Occurrence and synthesis|coronene]]-mercury spikes<ref>{{cite news |title=Large volcanic eruption caused the largest mass extinction |website=phys.org |language=en |url=https://phys.org/news/2020-11-large-volcanic-eruption-largest-mass.html |access-date=8 December 2020}}</ref><ref name="KaihoAftabuzzamanJonesTian2020PulsedVolcano">{{cite journal |last1=Kaiho |first1=Kunio |last2=Aftabuzzaman |first2=Md |last3=Jones |first3=David S. |last4=Tian |first4=Li |title=Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis |journal=[[Geology (journal)|Geology]] |date=4 November 2020 |volume=49 |issue=3 |pages=289–293 |doi=10.1130/G48022.1 |issn=0091-7613 |doi-access=free |language=en }} [[File:CC-BY icon.svg|50px]] Available under [https://creativecommons.org/licenses/by/4.0/ CC BY 4.0].</ref> coinciding with geographically widespread mercury anomalies and the rise in isotopically light carbon.<ref>{{cite journal |last1=Shen |first1=Jun |last2=Yu |first2=Jianxin |last3=Chen |first3=Jiubin |last4=Algeo |first4=Thomas J. |last5=Xu |first5=Guozhen |last6=Feng |first6=Qinglai |last7=Shi |first7=Xiao |last8=Planavsky |first8=Noah J. |last9=Shu |first9=Wenchao |last10=Xie |first10=Shucheng |date=25 September 2019 |title=Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/47/12/1117/573755/Mercury-evidence-of-intense-volcanic-effects-on?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=47 |issue=12 |pages=1117–1121 |doi=10.1130/G46679.1 |bibcode=2019Geo....47.1117S |s2cid=204262451 |access-date=26 May 2023|url-access=subscription }}</ref> Te/Th values increase twentyfold over the PTME, further indicating it was concomitant with extreme volcanism.<ref>{{Cite journal |last1=Regelous |first1=Marcel |last2=Regelous |first2=Anette |last3=Grasby |first3=Stephen E. |last4=Bond |first4=David P. G. |last5=Haase |first5=Karsten M. |last6=Gleißner |first6=Stefan |last7=Wignall |first7=Paul Barry |date=31 October 2020 |title=Tellurium in Late Permian-Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GC009064 |journal=[[Geochemistry, Geophysics, Geosystems]] |language=en |volume=21 |issue=11 |doi=10.1029/2020GC009064 |bibcode=2020GGG....2109064R |issn=1525-2027 |access-date=13 March 2024}}</ref> A major volcanogenic influx of isotopically light zinc from the Siberian Traps has also been recorded, further confirming that volcanism was contemporary with the PTME.<ref>{{cite journal |last1=Liu |first1=Sheng-Ao |last2=Wu |first2=Huaichun |last3=Shen |first3=Shu-zhong |last4=Jiang |first4=Ganqing |last5=Zhang |first5=Shihong |last6=Lv |first6=Yiwen |last7=Zhang |first7=Hua |last8=Li |first8=Shuguang |date=1 April 2017 |title=Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/45/4/343/195425/Zinc-isotope-evidence-for-intensive-magmatism?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=45 |issue=4 |pages=343–346 |bibcode=2017Geo....45..343L |doi=10.1130/G38644.1 |access-date=28 March 2023|url-access=subscription }}</ref> The Siberian Traps eruptions had unusual features that made them even more dangerous. The Siberian lithosphere is rich in [[halogens]] extremely destructive to the ozone layer, and evidence from subcontinental lithospheric xenoliths indicates that as much as 70% of their halogen content was released into the atmosphere.<ref name="BroadleyEtAl2018">{{cite journal |last1=Broadley |first1=Michael W. |last2=Barry |first2=Peter H. |last3=Ballentine |first3=Chris J. |last4=Taylor |first4=Lawrence A. |last5=Burgess |first5=Ray |date=27 August 2018 |title=End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles |url=https://www.nature.com/articles/s41561-018-0215-4?error=cookies_not_supported&code=eab6ab07-3e24-4b31-a6f9-5b52bbd88177 |journal=[[Nature Geoscience]] |volume=11 |issue=9 |pages=682–687 |doi=10.1038/s41561-018-0215-4 |bibcode=2018NatGe..11..682B |s2cid=133833819 |access-date=28 March 2023}}</ref> Around 18 teratonnes of [[hydrochloric acid]] were emitted,<ref>{{Cite journal |last1=Sobolev |first1=Stephan V. |last2=Sobolev |first2=Alexander V. |last3=Kuzmin |first3=Dmitry V. |last4=Krivolutskaya |first4=Nadezhda A. |last5=Petrunin |first5=Alexey G. |last6=Arndt |first6=Nicholas T. |last7=Radko |first7=Viktor A. |last8=Vasiliev |first8=Yuri R. |date=14 September 2011 |title=Linking mantle plumes, large igneous provinces and environmental catastrophes |url=https://www.nature.com/articles/nature10385 |journal=[[Nature (journal)|Nature]] |language=en |volume=477 |issue=7364 |pages=312–316 |doi=10.1038/nature10385 |pmid=21921914 |bibcode=2011Natur.477..312S |s2cid=205226146 |issn=0028-0836 |access-date=20 September 2023}}</ref> along with sulphur-rich volatiles that caused dust clouds and acid [[aerosols]], which would have blocked out sunlight and disrupted photosynthesis on land and in the [[photic zone]] of the ocean, causing food chains to collapse. These volcanic outbursts of sulphur also induced brief but severe global cooling punctuating the broader trend of rapid global warming,<ref>{{cite journal |last1=Brand |first1=Uwe |last2=Posenato |first2=Renato |last3=Came |first3=Rosemarie |last4=Affek |first4=Hagit |last5=Angiolini |first5=Lucia |last6=Azmy |first6=Karem |last7=Farabegoli |first7=Enzo |date=5 September 2012 |title=The end-Permian mass extinction: A rapid volcanic CO<sub>2</sub> and CH<sub>4</sub>-climatic catastrophe |url=https://www.sciencedirect.com/science/article/abs/pii/S0009254112002938 |journal=[[Chemical Geology]] |volume=322-323 |pages=121–144 |doi=10.1016/j.chemgeo.2012.06.015 |bibcode=2012ChGeo.322..121B |access-date=5 March 2023|url-access=subscription }}</ref> with glacio-eustatic sea level fall.<ref name="BroadleyEtAl2018" /><ref>{{cite journal |last1=Baresel |first1=Björn |last2=Bucher |first2=Hugo |last3=Bagherpour |first3=Borhan |last4=Brosse |first4=Morgane |last5=Guodun |first5=Kuang |last6=Schaltegger |first6=Urs |date=6 March 2017 |title=Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms |journal=[[Scientific Reports]] |volume=7 |page=43630 |doi=10.1038/srep43630 |pmid=28262815 |pmc=5338007 |bibcode=2017NatSR...743630B }}</ref> However, the briefness of these cold events makes them unlikely to have been a significant kill mechanism.<ref>{{Cite journal |last1=Wignall |first1=Paul Barry |last2=Bond |first2=David P. G. |date=25 October 2023 |title=The great catastrophe: causes of the Permo-Triassic marine mass extinction |journal=[[National Science Review]] |language=en |volume=11 |issue=1 |pages=nwad273 |doi=10.1093/nsr/nwad273 |issn=2095-5138 |pmc=10753410 |pmid=38156041 }}</ref> The eruptions may also have caused acid rain as the aerosols washed out of the atmosphere.<ref>{{cite journal |last1=Maruoka |first1=T. |last2=Koeberl |first2=C. |last3=Hancox |first3=P. J. |last4=Reimold |first4=W. U. |date=30 January 2003 |title=Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo Basin, South Africa |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X02010877 |journal=[[Earth and Planetary Science Letters]] |volume=206 |issue=1–2 |pages=101–117 |doi=10.1016/S0012-821X(02)01087-7 |bibcode=2003E&PSL.206..101M |access-date=31 May 2023|url-access=subscription }}</ref> That may have killed land plants and [[mollusk]]s and [[plankton]]ic organisms with calcium carbonate shells. Pure flood basalts produce fluid, low-viscosity lava, and do not hurl debris into the atmosphere. It appears, however, that 20% of the output of the Siberian Traps eruptions was [[Pyroclastic rock|pyroclastic]] ash thrown high into the atmosphere, increasing the short-term cooling effect.<ref>{{cite web |title=Volcanism |website=hoopermuseum.earthsci.carleton.ca |department=Hooper Museum |publisher=Carleton University |place=Ottawa, Ontario, Canada |url=http://hoopermuseum.earthsci.carleton.ca/pt_boundary/Causes/volcanics.html}}</ref> When this had washed out of the atmosphere, the excess carbon dioxide would have remained and global warming would have proceeded unchecked.<ref name="White">{{cite journal |author = White, R. V. |year = 2002 |title = Earth's biggest 'whodunnit': Unravelling the clues in the case of the end-Permian mass extinction |journal = [[Philosophical Transactions of the Royal Society of London]] |volume = 360 |issue = 1801 |pages = 2963–2985 |doi = 10.1098/rsta.2002.1097 |pmid = 12626276 |bibcode = 2002RSPTA.360.2963W |s2cid = 18078072 |url = http://www.le.ac.uk/gl/ads/SiberianTraps/Documents/White2002-P-Tr-whodunit.pdf |access-date = 2008-01-12 |archive-date = 2020-11-11 |archive-url = https://web.archive.org/web/20201111204457/https://www.le.ac.uk/gl/ads/SiberianTraps/Documents/White2002-P-Tr-whodunit.pdf |url-status = dead }}</ref> Burning of hydrocarbon deposits may have exacerbated the extinction. The Siberian Traps are underlain by thick sequences of Early-Mid [[Paleozoic]] aged [[Carbonate rock|carbonate]] and [[evaporite]] deposits, as well as Carboniferous-Permian aged coal bearing [[clastic rock]]s. When heated, such as by [[igneous intrusion]]s, these rocks may emit large amounts of greenhouse and toxic gases.<ref>{{cite journal |last1=Elkins-Tanton |first1=L. T. |last2=Grasby |first2=Stephen E. |last3=Black |first3=B. A. |last4=Veselovskiy |first4=R. V. |last5=Ardakani |first5=O. H. |last6=Goodarzi |first6=F. |date=12 June 2020 |title=Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption |journal=[[Geology (journal)|Geology]] |volume=48 |issue=10 |pages=986–991 |doi=10.1130/G47365.1 |bibcode=2020Geo....48..986E |doi-access=free }}</ref> The unique setting of the Siberian Traps over these deposits is likely the reason for the severity of the extinction.<ref>{{cite journal |last1=Svensen |first1=Henrik |last2=Planke |first2=Sverre |last3=Polozov |first3=Alexander G. |last4=Schmidbauer |first4=Norbert |last5=Corfu |first5=Fernando |last6=Podladchikov |first6=Yuri Y. |last7=Jamtveit |first7=Bjørn |date=30 January 2009 |title=Siberian gas venting and the end-Permian environmental crisis |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X08007292 |journal=[[Earth and Planetary Science Letters]] |volume=297 |issue=3–4 |pages=490–500 |doi=10.1016/j.epsl.2008.11.015 |bibcode=2009E&PSL.277..490S |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Konstantinov |first1=Konstantin M. |last2=Bazhenov |first2=Mikhail L. |last3=Fetisova |first3=Anna M. |last4=Khutorskoy |first4=Mikhail D. |date=May 2014 |title=Paleomagnetism of trap intrusions, East Siberia: Implications to flood basalt emplacement and the Permo–Triassic crisis of biosphere |journal=[[Earth and Planetary Science Letters]] |language=en |volume=394 |pages=242–253 |doi=10.1016/j.epsl.2014.03.029 |bibcode=2014E&PSL.394..242K |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X14001733|url-access=subscription }}</ref><ref>{{Cite journal |last1=Chen |first1=Chengsheng |last2=Qin |first2=Shengfei |last3=Wang |first3=Yunpeng |last4=Holland |first4=Greg |last5=Wynn |first5=Peter |last6=Zhong |first6=Wanxu |last7=Zhou |first7=Zheng |date=12 November 2022 |title=High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions |journal=[[Nature Communications]] |language=en |volume=13 |issue=1 |pages=6893 |doi=10.1038/s41467-022-34645-3 |pmid=36371500 |pmc=9653473 |bibcode=2022NatCo..13.6893C |issn=2041-1723 }}</ref> The basalt lava erupted or intruded into [[carbonate]] rocks and sediments in the process of forming large coal beds, which would have emitted large amounts of carbon dioxide, leading to stronger global warming after the dust and [[aerosol]]s settled.<ref name="White" /> The change of the eruptions from flood basalt to sill dominated emplacement, liberating even more trapped hydrocarbon deposits, coincides with the main onset of the extinction<ref name="InitialPulse">{{cite journal |last1=Burgess |first1=S. D. |last2=Muirhead |first2=J. D. |last3=Bowring |first3=S. A. |date=31 July 2017 |title=Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction |journal=[[Nature Communications]] |volume=8 |issue=1 |page=164 |doi=10.1038/s41467-017-00083-9 |pmid=28761160 |pmc=5537227 |bibcode=2017NatCo...8..164B |s2cid=3312150 }}</ref> and is linked to a major negative {{delta|13|C}} excursion.<ref>{{cite journal |last1=Dal Corso |first1=Jacopo |last2=Mills |first2=Benjamin J. W. |last3=Chu |first3=Daoling |last4=Newton |first4=Robert J. |last5=Mather |first5=Tamsin A. |last6=Shu |first6=Wenchao |last7=Wu |first7=Yuyang |last8=Tong |first8=Jinnan |last9=Wignall |first9=Paul Barry |date=11 June 2020 |title=Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse |journal=[[Nature Communications]] |volume=11 |issue=1 |page=2962 |doi=10.1038/s41467-020-16725-4 |pmid=32528009 |pmc=7289894 |bibcode=2020NatCo..11.2962D }}</ref> The intermediate temperature of the Siberian Traps magmas optimised the extremely voluminous release of CO<sub>2</sub> by way of heating of evaporites and carbonates.<ref>{{Cite journal |last=Kaiho |first=Kunio |date=30 April 2024 |title=Role of volcanism and impact heating in mass extinction climate shifts |journal=[[Scientific Reports]] |language=en |volume=14 |issue=1 |pages=9946 |doi=10.1038/s41598-024-60467-y |pmid=38688982 |issn=2045-2322 |pmc=11061309 |bibcode=2024NatSR..14.9946K }}</ref> Venting of coal-derived methane was accompanied by explosive combustion of coal and discharge of coal-fly ash.<ref name="lava/coal fires" /> A 2011 study led by Stephen E. Grasby reported evidence that volcanism caused massive coal beds to ignite, possibly releasing more than 3 trillion tons of carbon. They found ash deposits in deep rock layers near what is now the [[Buchanan Lake Formation]]: "coal ash dispersed by the explosive Siberian Trap eruption would be expected to have an associated release of toxic elements in impacted water bodies where [[fly ash]] slurries developed. ... Mafic megascale eruptions are long-lived events that would allow significant build-up of global ash clouds."<ref>{{cite news |author=Verango, Dan |date=24 January 2011 |title=Ancient mass extinction tied to torched coal |newspaper=[[USA Today]] |url=http://content.usatoday.com/communities/sciencefair/post/2011/01/ancient-mass-extinction-tied-to-torched-coal-/1}}</ref><ref>{{cite journal |author1=Grasby, Stephen E. |author2=Sanei, Hamed |author3=Beauchamp, Benoit |name-list-style=amp |date=January 23, 2011 |title=Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction |journal=[[Nature Geoscience]] |doi=10.1038/ngeo1069 |volume=4|issue=2|pages=104–107|bibcode = 2011NatGe...4..104G }}</ref> Grasby said, "In addition to these volcanoes causing fires through coal, the ash it spewed was highly toxic and was released in the land and water, potentially contributing to the worst extinction event in Earth history."<ref>{{cite press release |title=Researchers find smoking gun of world's biggest extinction: Massive volcanic eruption, burning coal and accelerated greenhouse gas choked out life |date=January 23, 2011 |publisher=University of Calgary |url=http://www.eurekalert.org/pub_releases/2011-01/uoc-rfs012111.php |access-date=26 January 2011}}</ref> However, some researchers propose that these supposed fly ashes were actually the result of wildfires not related to massive coal combustion by intrusive magmatism.<ref>{{cite journal |last1=Hudspith |first1=Victoria A. |last2=Brimmer |first2=Susan M. |last3=Belcher |first3=Claire M. |date=1 October 2014 |title=Latest Permian chars may derive from wildfires, not coal combustion |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/42/10/879/131412/Latest-Permian-chars-may-derive-from-wildfires-not?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=42 |issue=10 |pages=879–882 |doi=10.1130/G35920.1 |bibcode=2014Geo....42..879H |hdl=10871/20251 |access-date=31 May 2023|hdl-access=free }}</ref> A 2013 study led by Q.Y. Yang reported that the total amounts of important volatiles emitted from the Siberian Traps consisted of 8.5 × {{10^|7}} Tg CO{{sub|2}}, 4.4 × {{10^|6}} Tg CO, 7.0 × {{10^|6}} Tg H{{sub|2}}S, and 6.8 × {{10^|7}} Tg SO{{sub|2}}.<ref>{{cite journal |last = Yang |first = Q.Y. |date = 2013 |title = The chemical compositions and abundances of volatiles in the Siberian large igneous province: Constraints on magmatic CO<sub>2</sub> and SO<sub>2</sub> emissions into the atmosphere |journal = [[Chemical Geology]] |volume=339 |pages=84–91 |bibcode =2013ChGeo.339...84T |doi = 10.1016/j.chemgeo.2012.08.031}}</ref> The sill-dominated emplacement of the Siberian Traps prolonged their warming effects; whereas extrusive volcanism generates an abundance of subaerial basalts that efficiently sequester carbon dioxide via the [[Carbonate–silicate cycle|silicate weathering]] process, underground sills cannot sequester atmospheric carbon dioxide and mitigate global warming.<ref>{{Cite journal |last1=Jones |first1=Morgan T. |last2=Jerram |first2=Dougal A. |last3=Svensen |first3=Henrik H. |last4=Grove |first4=Clayton |date=1 January 2016 |title=The effects of large igneous provinces on the global carbon and sulphur cycles |url=https://www.sciencedirect.com/science/article/pii/S0031018215003557 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |series=Impact, Volcanism, Global changes and Mass Extinctions |volume=441 |pages=4–21 |bibcode=2016PPP...441....4J |doi=10.1016/j.palaeo.2015.06.042 |issn=0031-0182 |access-date=12 January 2024 |via=Elsevier Science Direct}}</ref> Additionally, enhanced reverse weathering and depletion of siliceous carbon sinks enabled extreme warmth to persist for much longer than expected if the excess carbon dioxide was sequestered by silicate rock.<ref name="EnhancedReverseWeathering" /> The reduction in marine primary productivity diminished emissions of [[Dimethyl sulfate|dimethyl sulphate]] and [[Dimethylsulfoniopropionate|dimethylsulphoniopropionate]], enhancing warming.<ref>{{Cite journal |last1=Winguth |first1=Arne M.E. |last2=Shields |first2=Christine A. |last3=Winguth |first3=Cornelia |date=15 December 2015 |title=Transition into a Hothouse World at the Permian–Triassic boundary—A model study |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018215004927 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=440 |pages=316–327 |doi=10.1016/j.palaeo.2015.09.008 |bibcode=2015PPP...440..316W |access-date=13 October 2024 |via=Elsevier Science Direct}}</ref> Also, the decline in biological silicate deposition resulting from the mass extinction of siliceous organisms acted as a positive feedback loop wherein mass death of marine life exacerbated and prolonged extreme hothouse conditions by depleting yet another siliceous carbon sink.<ref>{{cite journal |last1=Isson |first1=Terry T. |last2=Zhang |first2=Shuang |last3=Lau |first3=Kimberly V. |last4=Rauzi |first4=Sofia |last5=Tosca |first5=Nicholas J. |last6=Penman |first6=Donald E. |last7=Planavsky |first7=Noah J. |date=18 June 2022 |title=Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth |journal=[[Nature Communications]] |volume=13 |issue=1 |page=3509 |bibcode=2022NatCo..13.3509I |doi=10.1038/s41467-022-31128-3 |pmc=9206662 |pmid=35717338}}</ref> Mercury anomalies corresponding to the time of Siberian Traps activity have been found in many geographically disparate sites,<ref>{{Cite journal |last1=Wang |first1=Xiangdong |last2=Cawood |first2=Peter A. |last3=Zhao |first3=He |last4=Zhao |first4=Laishi |last5=Grasby |first5=Stephen E. |last6=Chen |first6=Zhong-Qiang |last7=Wignall |first7=Paul Barry |last8=Lv |first8=Zhengyi |last9=Han |first9=Chen |date=15 August 2018 |title=Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X18303273 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=496 |pages=159–167 |doi=10.1016/j.epsl.2018.05.044 |bibcode=2018E&PSL.496..159W |access-date=13 October 2024 |via=Elsevier Science Direct}}</ref><ref>{{cite journal |last1=Shen |first1=Jun |last2=Shen |first2=Jiubin |last3=Yu |first3=Jianxin |last4=Algeo |first4=Thomas J. |last5=Smith |first5=Roger M. H. |last6=Botha |first6=Jennifer |last7=Frank |first7=Tracy D. |last8=Fielding |first8=Christopher R. |last9=Ward |first9=Peter D. |last10=Mather |first10=Tamsin A. |date=3 January 2023 |title=Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects |journal=[[Nature Communications]] |volume=14 |issue=1 |page=6 |pmid=36596767 |doi=10.1038/s41467-022-35272-8 |pmc=9810726 |bibcode=2023NatCo..14....6S }}</ref><ref>{{Cite journal |last1=Wang |first1=Xiangdong |last2=Cawood |first2=Peter A. |last3=Zhao |first3=He |last4=Zhao |first4=Laishi |last5=Grasby |first5=Stephen E. |last6=Chen |first6=Zhong-Qiang |last7=Zhang |first7=Lei |date=1 May 2019 |title=Global mercury cycle during the end-Permian mass extinction and subsequent Early Triassic recovery |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X19301232 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=513 |pages=144–155 |doi=10.1016/j.epsl.2019.02.026 |bibcode=2019E&PSL.513..144W |access-date=18 June 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> indicating that these volcanic eruptions released significant quantities of toxic [[mercury (element)|mercury]] into the atmosphere and ocean, causing even larger terrestrial and marine die-offs.<ref name="GrasbyBeuchampBondWignallTalavera">{{cite journal |last1=Grasby |first1=Stephen E. |last2=Beauchamp |first2=Benoit |last3=Bond |first3=David P. G. |last4=Wignall |first4=Paul Barry |last5=Talavera |first5=Cristina |last6=Galloway |first6=Jennifer M. |last7=Piepjohn |first7=Karsten |last8=Reinhardt |first8=Lutz |last9=Blomeier |first9=Dirk |date=1 September 2015 |title=Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction |url=https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/127/9-10/1331/126156/Progressive-environmental-deterioration-in?redirectedFrom=fulltext&casa_token=SBzzNzoBSCYAAAAA:OtsqSN19ia2hYYHI9mHwRXG987jdyDf98sfQPKHSP_fJDlhKAZo8lg67LthiuORkeD1ziDTq |journal=[[Geological Society of America Bulletin]] |volume=127 |issue=9–10 |pages=1331–1347 |doi=10.1130/B31197.1 |bibcode=2015GSAB..127.1331G |access-date=14 January 2023}}</ref><ref>{{cite journal |last1=Grasby |first1=Stephen E. |last2=Beauchamp |first2=Benoit |last3=Bond |first3=David P. G. |last4=Wignall |first4=Paul Barry |last5=Sanei |first5=Hamed |year=2016 |title=Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea |journal=[[Geological Magazine]] |volume=153 |issue=2 |pages=285–297 |doi=10.1017/S0016756815000436 |bibcode=2016GeoM..153..285G |s2cid=85549730 |doi-access=free }}</ref><ref>{{cite journal |last1=Sanei |first1=Hamed |last2=Grasby |first2=Stephen E. |last3=Beauchamp |first3=Benoit |date=1 January 2012 |title=Latest Permian mercury anomalies |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/40/1/63/130712/Latest-Permian-mercury-anomalies?redirectedFrom=fulltext&casa_token=6JfaFOQQFCEAAAAA:e5qnj64oyXQsKIktBioNo_B74H5BbzCLiOiY36lj5WmCFkl90xgKoaIAahEYNOQyuXKzqck5 |journal=[[Geology (journal)|Geology]] |volume=40 |issue=1 |pages=63–66 |doi=10.1130/G32596.1 |bibcode=2012Geo....40...63S |access-date=14 January 2023|url-access=subscription }}</ref> A series of surges raised terrestrial and marine environmental mercury concentrations by orders of magnitude above normal background levels and caused [[mercury poisoning]] over periods of a thousand years each.<ref>{{cite journal |last1=Grasby |first1=Stephen E. |last2=Liu |first2=Xiaojun |last3=Yin |first3=Runsheng |last4=Ernst |first4=Richard E. |last5=Chen |first5=Zhuoheng |date=19 May 2020 |title=Toxic mercury pulses into late Permian terrestrial and marine environments |journal=[[Geology (journal)|Geology]] |volume=48 |issue=8 |pages=830–833 |doi=10.1130/G47295.1 |bibcode=2020Geo....48..830G |s2cid=219495628 |doi-access=free }}</ref><ref>{{Cite journal |last1=Paterson |first1=Niall W. |last2=Rossi |first2=Valentina M. |last3=Schneebeli-Hermann |first3=Elke |date=October 2024 |title=Volcanogenic mercury and plant mutagenesis during the end-Permian mass extinction: Palaeoecological perturbation in northern Pangaea |url=https://www.sciencedirect.com/science/article/abs/pii/S1342937X24001862 |journal=[[Gondwana Research]] |language=en |volume=134 |pages=123–143 |doi=10.1016/j.gr.2024.06.018 |bibcode=2024GondR.134..123P |access-date=13 October 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> [[Mutagenesis]] in surviving plants after the PTME coeval with mercury and copper loading confirms volcanically induced [[heavy metal toxicity]].<ref name="MetalStress">{{cite journal |last1=Chu |first1=Daoliang |last2=Dal Corso |first2=Jacopo |last3=Shu |first3=Wenchao |last4=Song |first4=Haijun |last5=Wignall |first5=Paul Barry |last6=Grasby |first6=Stephen E. |last7=Van de Schootbrugge |first7=Bas |last8=Zong |first8=Keqing |last9=Wu |first9=Yuyang |last10=Tong |first10=Jinnan |date=5 February 2021 |title=Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems |journal=[[Geology (journal)|Geology]] |volume=49 |issue=6 |pages=657–661 |doi=10.1130/G48333.1 |bibcode=2021Geo....49..657C |s2cid=234074046 |doi-access=free }}</ref> Increased bioproductivity may have sequestered mercury and party mitigated poisoning.<ref>{{cite journal |last1=Grasby |first1=Stephen E. |last2=Sanei |first2=Hamed |last3=Beauchamp |first3=Benoit |last4=Chen |first4=Zhuoheng |date=2 August 2013 |title=Mercury deposition through the Permo–Triassic Biotic Crisis |url=https://www.sciencedirect.com/science/article/abs/pii/S0009254113002283 |journal=[[Chemical Geology]] |volume=351 |pages=209–216 |doi=10.1016/j.chemgeo.2013.05.022 |bibcode=2013ChGeo.351..209G |access-date=31 May 2023|url-access=subscription }}</ref> Immense volumes of [[Nickel (element)|nickel]] aerosols and [[cobalt]] and [[arsenic]] emisions, were also released,<ref>{{cite journal |last1=Le Vaillant |first1=Margaux |last2=Barnes |first2=Stephen J. |last3=Mungall |first3=James E. |last4=Mungall |first4=Emma L. |date=21 February 2017 |title=Role of degassing of the Noril'sk nickel deposits in the Permian–Triassic mass extinction event |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=114 |issue=10 |pages=2485–2490 |doi=10.1073/pnas.1611086114 |pmid=28223492 |pmc=5347598 |bibcode=2017PNAS..114.2485L |doi-access=free }}</ref><ref>{{cite journal |last1=Rampino |first1=Michael R. |last2=Rodriguez |first2=Sedelia |last3=Baransky |first3=Eva |last4=Cai |first4=Yue |date=29 September 2017 |title=Global nickel anomaly links Siberian Traps eruptions and the latest Permian mass extinction |journal=[[Scientific Reports]] |volume=7 |issue=1 |page=12416 |doi=10.1038/s41598-017-12759-9 |pmid=28963524 |pmc=5622041 |bibcode=2017NatSR...712416R }}</ref><ref name="GrasbyBeuchampBondWignallTalavera" /> further contributing to metal poisoning.<ref>{{cite journal |last1=Li |first1=Menghan |last2=Grasby |first2=Stephen E. |last3=Wang |first3=Shui-Jiong |last4=Zhang |first4=Xiaolin |last5=Wasylenki |first5=Laura E. |last6=Xu |first6=Yilun |last7=Sun |first7=Mingzhao |last8=Beauchamp |first8=Benoit |last9=Hu |first9=Dongping |last10=Shen |first10=Yanan |date=1 April 2021 |title=Nickel isotopes link Siberian Traps aerosol particles to the end-Permian mass extinction |journal=[[Nature Communications]] |volume=12 |issue=1 |page=2024 |doi=10.1038/s41467-021-22066-7 |pmid=33795666 |pmc=8016954 |bibcode=2021NatCo..12.2024L }}</ref> The devastation wrought by the Siberian Traps did not end following the Permian-Triassic boundary. Carbon isotope fluctuations suggest that massive Siberian Traps activity recurred many times during the Early Triassic,<ref>{{cite journal |last1=Clarkson |first1=M. O. |last2=Richoz |first2=Sylvain |last3=Wood |first3=R. A. |last4=Maurer |first4=F. |last5=Krystyn |first5=L. |last6=McGurty |first6=D. J. |last7=Astratti |first7=D. |date=July 2013 |title=A new high-resolution δ13C record for the Early Triassic: Insights from the Arabian Platform |url=https://www.sciencedirect.com/science/article/abs/pii/S1342937X12003139 |journal=[[Gondwana Research]] |volume=24 |issue=1 |pages=233–242 |doi=10.1016/j.gr.2012.10.002 |bibcode=2013GondR..24..233C |access-date=26 May 2023|url-access=subscription }}</ref><ref>{{Cite journal |last1=Lehrmann |first1=Daniel J. |last2=Stepchinski |first2=Leanne |last3=Altiner |first3=Demir |last4=Orchard |first4=Michael J. |last5=Montgomery |first5=Paul |last6=Enos |first6=Paul |last7=Ellwood |first7=Brooks B. |last8=Bowring |first8=Samuel A. |last9=Ramezani |first9=Jahandar |last10=Wang |first10=Hongmei |last11=Wei |first11=Jiayong |last12=Yu |first12=Meiyi |last13=Griffiths |first13=James D. |last14=Minzoni |first14=Marcello |last15=Schaal |first15=Ellen K. |last16=Li |first16=Xiaowei |last17=Meyer |first17=Katja M. |last18=Payne |first18=Jonathan L. |date=August 2015 |title=An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China |url=https://linkinghub.elsevier.com/retrieve/pii/S1367912015002394 |journal=[[Journal of Asian Earth Sciences]] |language=en |volume=108 |pages=117–135 |doi=10.1016/j.jseaes.2015.04.030 |bibcode=2015JAESc.108..117L |access-date=18 June 2024 |via=Elsevier Science Direct}}</ref> a finding corroborated by mercury spikes,<ref>{{Cite journal |last1=Shen |first1=Jun |last2=Algeo |first2=Thomas J. |last3=Planavsky |first3=Noah J. |last4=Yu |first4=Jianxin |last5=Feng |first5=Qinglai |last6=Song |first6=Haijun |last7=Song |first7=Huyue |last8=Rowe |first8=Harry |last9=Zhou |first9=Lian |last10=Chen |first10=Jiubin |date=August 2019 |title=Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825218302599 |journal=Earth-Science Reviews |language=en |volume=195 |pages=191–212 |doi=10.1016/j.earscirev.2019.05.010 |bibcode=2019ESRv..195..191S |access-date=18 June 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> causing further extinction events during the epoch.<ref>{{cite journal |last1=Caravaca |first1=Gwénaël |last2=Thomazo |first2=Christophe |last3=Vennin |first3=Emmanuelle |last4=Olivier |first4=Nicolas |last5=Cocquerez |first5=Théophile |last6=Escarguel |first6=Gilles |last7=Fara |first7=Emmanuel |last8=Jenks |first8=James F. |last9=Bylund |first9=Kevin G. |last10=Stephen |first10=Daniel A. |last11=Brayard |first11=Arnaud |date=July 2017 |title=Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818117300504 |journal=[[Global and Planetary Change]] |volume=154 |pages=10–22 |doi=10.1016/j.gloplacha.2017.05.005 |bibcode=2017GPC...154...10C |s2cid=135330761 |access-date=13 November 2022}}</ref> ====Choiyoi Silicic Large Igneous Province==== A second flood basalt event that produced the Choiyoi Silicic Large Igneous Province in southwestern Gondwana between around 286 Ma and 247 Ma has also been suggested as a significant additional extinction mechanism.<ref name="JosefinaBodnar" /> At 1,300,000 cubic kilometres in volume<ref>{{cite journal |last1=Nelson |first1=D. A. |last2=Cottle |first2=J. M. |date=29 March 2019 |title=Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica |journal=[[Lithosphere (journal)|Lithosphere]] |volume=11 |issue=3 |pages=386–398 |doi=10.1130/L1015.1 |bibcode=2019Lsphe..11..386N |s2cid=135130436 |doi-access=free }}</ref> and 1,680,000 square kilometres in area, this event was 40% the size of the Siberian Traps.<ref name="JosefinaBodnar" /> Specifically, this flood basalt has been implicated in the regional demise of the Gondwanan ''Glossopteris'' flora.<ref>{{Cite journal |last1=Spalletti |first1=Luis A. |last2=Limarino |first2=Carlos O. |date=29 September 2017 |title=The Choiyoi magmatism in south western Gondwana: implications for the end-permian mass extinction - a review |url=http://www.andeangeology.cl/index.php/revista1/article/view/V44n3-a05 |journal=[[Andean Geology]] |volume=44 |issue=3 |pages=328 |doi=10.5027/andgeoV44n3-a05 |issn=0718-7106 |access-date=20 September 2023|doi-access=free |bibcode=2017AndGe..44..328S |hdl=11336/66408 |hdl-access=free }}</ref> ====Indochina–South China subduction-zone volcanic arc==== Mercury anomalies preceding the end-Permian extinction have been discovered in what was then the boundary between the South China craton and the Indochinese plate, a subduction zone with a volcanic arc. Hafnium isotopes from syndepositional magmatic zircons found in ash beds created by this volcanic pulse confirm its origin in subduction-zone volcanism rather than large igneous province activity.<ref name="MercuryFluxesRegionalVolcanismSouthChinaCraton" /> The enrichment of copper samples from these deposits in isotopically light copper provide additional confirmation.<ref>{{cite journal |last1=Zhang |first1=Hua |last2=Zhang |first2=Feifei |last3=Chen |first3=Jiubin |last4=Erwin |first4=Douglas H. |last5=Syverson |first5=Drew D. |last6=Ni |first6=Pei |last7=Rampino |first7=Michael R. |last8=Chi |first8=Zhe |last9=Cai |first9=Yao-Feng |last10=Xiang |first10=Lei |last11=Li |first11=We-Qiang |last12=Liu |first12=Sheng-Ao |last13=Wang |first13=Ru-Cheng |last14=Wang |first14=Xiang-Dong |last15=Feng |first15=Zhuo |last16=Li |first16=Hou-Min |last17=Zhang |first17=Ting |last18=Cai |first18=Mong-Ming |last19=Zheng |first19=Wang |last20=Cui |first20=Ying |last21=Zhu |first21=Xiang-Kun |last22=Hou |first22=Zeng-Qian |last23=Wu |first23=Fu-Yuan |last24=Xu |first24=Yi-Gang |last25=Planavsky |first25=Noah J. |last26=Shen |first26=Shu-zhong |date=17 November 2021 |title=Felsic volcanism as a factor driving the end-Permian mass extinction |journal=[[Science Advances]] |volume=7 |issue=47 |pages=eabh1390 |doi=10.1126/sciadv.abh1390 |pmid=34788084 |pmc=8597993 |bibcode=2021SciA....7.1390Z }}</ref> This volcanism has been speculated to have caused local biotic stress among radiolarians, sponges, and brachiopods over the 60,000 years preceding the end-Permian marine extinction, as well as an ammonoid crisis with decreased morphological complexity and size and increased rate of turnover beginning in the lower ''C. yini'' biozone, around 200,000 years before the extinction.<ref name="MercuryFluxesRegionalVolcanismSouthChinaCraton">{{cite journal |last1=Shen |first1=Jun |last2=Chen |first2=Jiubin |last3=Algeo |first3=Thomas J. |last4=Feng |first4=Qinglai |last5=Yu |first5=Jianxin |last6=Xu |first6=Yi-Gang |last7=Xu |first7=Guozhen |last8=Lei |first8=Yong |last9=Planavsky |first9=Noah J. |last10=Xie |first10=Shucheng |date=10 December 2020 |title=Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/49/4/452/593185/Mercury-fluxes-record-regional-volcanism-in-the?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=49 |issue=4 |pages=452–456 |doi=10.1130/G48501.1 |s2cid=230524628 |access-date=28 March 2023|url-access=subscription }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)