Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plate tectonics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Magnetic striping === [[File:Oceanic.Stripe.Magnetic.Anomalies.Scheme.svg|thumb|Seafloor magnetic striping]] [[File:Polarityshift.gif|thumb|A demonstration of magnetic striping. The darker the color is, the closer it is to normal polarity.]] {{Further|Vine–Matthews–Morley hypothesis}} Beginning in the 1950s, scientists like [[Victor Vacquier]], using magnetic instruments ([[magnetometer]]s) adapted from airborne devices developed during [[World War II]] to detect [[submarine]]s, began recognizing odd magnetic variations across the ocean floor. This finding, though unexpected, was not entirely surprising because it was known that [[basalt]]—the iron-rich, volcanic rock making up the ocean floor—contains a strongly magnetic mineral ([[magnetite]]) and can locally distort compass readings. This distortion was recognized by Icelandic mariners as early as the late 18th century. More importantly, because the presence of magnetite gives the basalt measurable magnetic properties, these newly discovered magnetic variations provided another means to study the deep ocean floor. When newly formed rock cools, such magnetic materials recorded [[Earth's magnetic field]] at the time. As more and more of the seafloor was mapped during the 1950s, the magnetic variations turned out not to be random or isolated occurrences, but instead revealed recognizable patterns. When these magnetic patterns were mapped over a wide region, the ocean floor showed a [[zebra]]-like pattern: one stripe with normal polarity and the adjoining stripe with reversed polarity. The overall pattern, defined by these alternating bands of normally and reversely polarized rock, became known as magnetic striping, and was published by [[Ron G. Mason]] and co-workers in 1961, who did not find, though, an explanation for these data in terms of sea floor spreading, like Vine, Matthews and Morley a few years later.<ref>{{Harvnb|Mason|Raff|1961}}, {{Harvnb|Raff|Mason|1961}}.</ref> The discovery of magnetic striping called for an explanation. In the early 1960s scientists such as Heezen, Hess and Dietz had begun to theorise that mid-ocean ridges mark structurally weak zones where the ocean floor was being ripped in two lengthwise along the ridge crest (see the previous paragraph). New [[magma]] from deep within Earth rises easily through these weak zones and eventually erupts along the crest of the ridges to create new oceanic crust. This process, at first denominated the "conveyer belt hypothesis" and later called seafloor spreading, operating over many millions of years continues to form new ocean floor all across the 50,000 km-long system of mid-ocean ridges. Only four years after the maps with the "zebra pattern" of magnetic stripes were published, the link between sea floor spreading and these patterns was recognized independently by [[Lawrence Morley]], and by [[Fred Vine]] and [[Drummond Matthews]], in 1963,{{sfn|Vine|Matthews|1963}} (the [[Vine–Matthews–Morley hypothesis]]). This hypothesis linked these patterns to geomagnetic reversals and was supported by several lines of evidence:<ref>See summary in {{Harvnb|Heirtzler|Le Pichon|Baron|1966}}</ref> # the stripes are symmetrical around the crests of the mid-ocean ridges; at or near the crest of the ridge, the rocks are very young, and they become progressively older away from the ridge crest; # the youngest rocks at the ridge crest always have modern (normal) polarity; # stripes of rock parallel to the ridge crest alternate in magnetic polarity (normal-reversed-normal, etc.), suggesting that they were formed during different epochs documenting the (already known from independent studies) normal and reversal episodes of Earth's magnetic field. By explaining both the zebra-like magnetic striping and the construction of the mid-ocean ridge system, the seafloor spreading hypothesis (SFS) quickly gained converts and represented another major advance in the development of the plate-tectonics theory. Furthermore, the oceanic crust came to be appreciated as a natural "tape recording" of the history of the geomagnetic field reversals (GMFR) of Earth's magnetic field. Extensive studies were dedicated to the calibration of the normal-reversal patterns in the oceanic crust on one hand and known timescales derived from the dating of basalt layers in sedimentary sequences ([[magnetostratigraphy]]) on the other, to arrive at estimates of past spreading rates and plate reconstructions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)