Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pluto
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Natural satellites == {{main|Moons of Pluto}} [[File:Pluto-Charon system-new.gif|alt=|thumb|upright=1.28|An oblique view of the Pluto–Charon system, showing that Pluto orbits a point outside itself. The two bodies are mutually [[tidally locked]].]] [[File:Nh-pluto moons family portrait.png|thumb|Five known moons of Pluto to scale]] Pluto has five known [[natural satellite]]s. The largest and closest to Pluto is [[Charon (moon)|Charon]]. First identified in 1978 by astronomer [[James Christy]], Charon is the only moon of Pluto that may be in [[hydrostatic equilibrium]]. Charon's mass is sufficient to cause the barycenter of the Pluto–Charon system to be outside Pluto. Beyond Charon there are four much smaller [[circumbinary]] moons. In order of distance from Pluto they are Styx, Nix, Kerberos, and Hydra. [[Nix (moon)|Nix]] and [[Hydra (moon)|Hydra]] were both discovered in 2005,<ref name="Gugliotta2005" /> [[Kerberos (moon)|Kerberos]] was discovered in 2011,<ref name="P4" /> and [[Styx (moon)|Styx]] was discovered in 2012.<ref>{{cite news |url=http://www.space.com/16531-pluto-fifth-moon-hubble-discovery.html |title=Pluto Has a Fifth Moon, Hubble Telescope Reveals |last=Wall |first=Mike |date=July 11, 2012 |work=Space.com |access-date=July 11, 2012 |archive-date=May 14, 2020 |archive-url=https://web.archive.org/web/20200514184955/https://www.space.com/16531-pluto-fifth-moon-hubble-discovery.html |url-status=live }}</ref> The satellites' orbits are circular (eccentricity < 0.006) and coplanar with Pluto's equator (inclination < 1°),<ref name="Buie2012">{{cite journal |journal=The Astronomical Journal |last1=Buie |first1=M. |last2=Tholen |first2=D. |last3=Grundy |first3=W. |title=The Orbit of Charon is Circular |year=2012 |volume=144 |issue=1 |pages=15 |doi=10.1088/0004-6256/144/1/15 |bibcode=2012AJ....144...15B|s2cid=15009477 |url=http://pdfs.semanticscholar.org/bfb8/1eb1887c28df5f5348a491cff7d4870e8c77.pdf |archive-url=https://web.archive.org/web/20200412141438/http://pdfs.semanticscholar.org/bfb8/1eb1887c28df5f5348a491cff7d4870e8c77.pdf |url-status=dead |archive-date=April 12, 2020}}</ref><ref name="ShowalterHamilton2015" /> and therefore tilted approximately 120° relative to Pluto's orbit. The Plutonian system is highly compact: the five known satellites orbit within the inner 3% of the region where [[prograde orbit]]s would be stable.<ref name="Sternetal 2005" /> The orbital periods of all Pluto's moons are linked in a system of [[orbital resonance]]s and [[Orbital resonance#Coincidental 'near' ratios of mean motion|near-resonances]].<ref name="ShowalterHamilton2015">{{cite journal |last1=Showalter |first1=M.R. |author1-link=Mark R. Showalter |last2=Hamilton |first2=D.P. |title=Resonant interactions and chaotic rotation of Pluto's small moons |journal=Nature |volume=522 |issue=7554 |date=June 3, 2015 |pages=45–49 |doi=10.1038/nature14469 |bibcode=2015Natur.522...45S |pmid=26040889 |s2cid=205243819}}</ref><ref name="Witze2015">{{cite journal |last=Witze |first=Alexandra |title=Pluto's moons move in synchrony |journal=Nature |year=2015 |doi=10.1038/nature.2015.17681 |s2cid=134519717}}</ref> When [[Apsidal precession|precession]] is accounted for, the orbital periods of Styx, Nix, and Hydra are in an exact 18:22:33 ratio.<ref name="ShowalterHamilton2015" /> There is a sequence of approximate ratios, 3:4:5:6, between the periods of Styx, Nix, Kerberos, and Hydra with that of Charon; the ratios become closer to being exact the further out the moons are.<ref name="ShowalterHamilton2015" /><ref name="Matson">{{cite web |last=Matson |first=J. |date=July 11, 2012 |title=New Moon for Pluto: Hubble Telescope Spots a 5th Plutonian Satellite |work=[[Scientific American]] web site |url=http://www.scientificamerican.com/article.cfm?id=pluto-moon-p5 |access-date=July 12, 2012 |archive-date=August 31, 2016 |archive-url=https://web.archive.org/web/20160831015135/http://www.scientificamerican.com/article.cfm?id=pluto-moon-p5 |url-status=live }}</ref> The Pluto–Charon system is one of the few in the Solar System whose barycenter lies outside the primary body; the [[617 Patroclus|Patroclus–Menoetius]] system is a smaller example, and the [[Jupiter#Size and mass|Sun–Jupiter]] system is the only larger one.<ref name="RichardsonWalsh2005" /> The similarity in size of Charon and Pluto has prompted some astronomers to call it a [[Double planet|double dwarf planet]].<ref name="Sicardyetal2006nature" /> The system is also unusual among planetary systems in that each is [[tidally locked]] to the other, which means that Pluto and Charon always have the same hemisphere facing each other — a property shared by only one other known system, [[Eris (dwarf planet)|Eris]] and [[Dysnomia (moon)|Dysnomia]].<ref name="Szakats2022">{{cite journal |display-authors=etal |last1=Szakáts |first1=R. |last2=Kiss |first2=Cs. |last3=Ortiz |first3=J.L. |last4=Morales |first4=N. |last5=Pál |first5=A. |last6=Müller |first6=T.G. |title=Tidally locked rotation of the dwarf planet (136199) Eris discovered from long-term ground based and space photometry |journal=Astronomy & Astrophysics |volume=L3 |page=669 |year=2023 |arxiv=2211.07987 |bibcode=2023A&A...669L...3S |s2cid=253522934 |doi=10.1051/0004-6361/202245234}}</ref> From any position on either body, the other is always at the same position in the sky, or always obscured.<ref name="Young1997" /> This also means that the rotation period of each is equal to the time it takes the entire system to rotate around its barycenter.<ref name="axis" /> Pluto's moons are hypothesized to have been formed by a collision between Pluto and a similar-sized body, early in the history of the Solar System. The collision released material that consolidated into the moons around Pluto.<ref name="nasa.gov">{{cite web |title=NASA's Hubble Finds Pluto's Moons Tumbling in Absolute Chaos |url=http://www.nasa.gov/press-release/nasa-s-hubble-finds-pluto-s-moons-tumbling-in-absolute-chaos |date=June 3, 2015 |access-date=June 3, 2015 |archive-date=April 6, 2020 |archive-url=https://web.archive.org/web/20200406161853/https://www.nasa.gov/press-release/nasa-s-hubble-finds-pluto-s-moons-tumbling-in-absolute-chaos |url-status=live }}</ref><!--Kerberos has a much lower albedo than the other moons of Pluto,<ref name="spaceweirdmoons">{{cite web |title=Pluto's moons are even weirder than thought |url=http://www.space.com/29559-pluto-moons-weird-orbit-chaos.html |access-date=June 20, 2015}}</ref> which is difficult to explain with a giant collision.<ref name="nationalgeorandombeat">{{cite web |title=Pluto's moons dance to a random beat |url=http://news.nationalgeographic.com/2015/06/150603-pluto-moons-charon-styx-nix-kerberos-hydra-new-horizons/ |archive-url=https://web.archive.org/web/20150603215824/http://news.nationalgeographic.com/2015/06/150603-pluto-moons-charon-styx-nix-kerberos-hydra-new-horizons/ |url-status=dead |archive-date=June 3, 2015 |access-date=June 20, 2015}}</ref>-->{{clear}} === Quasi-satellite === In 2012, it was calculated that [[15810 Arawn]] could be a [[quasi-satellite]] of Pluto, a specific type of co-orbital configuration.<ref name="quasi" /> According to the calculations, the object would be a quasi-satellite of Pluto for about 350,000 years out of every two-million-year period.<ref name="quasi" /><ref name="S&T" /> Measurements made by the ''New Horizons'' spacecraft in 2015 made it possible to calculate the orbit of Arawn more accurately,<ref name="2016maynasa">{{cite web|title=New Horizons Collects First Science on a Post-Pluto Object|url=http://www.nasa.gov/feature/new-horizons-collects-first-science-on-a-post-pluto-object|publisher=NASA|date=May 13, 2016|access-date=June 5, 2016|archive-date=June 7, 2016|archive-url=https://web.archive.org/web/20160607150433/http://www.nasa.gov/feature/new-horizons-collects-first-science-on-a-post-pluto-object/|url-status=dead}}</ref> and confirmed the earlier ones.<ref name="analemma">{{cite journal |title=The analemma criterion: accidental quasi-satellites are indeed true quasi-satellites |first1=Carlos |last1=de la Fuente Marcos |last2=de la Fuente Marcos |first2=Raúl |journal=[[Monthly Notices of the Royal Astronomical Society]] |date=2016 |volume=462 |issue=3 |pages=3344–3349 |arxiv=1607.06686 |doi=10.1093/mnras/stw1833 |doi-access=free |bibcode=2016MNRAS.462.3344D|s2cid=119284843 }}</ref> However, it is not agreed upon among astronomers whether Arawn should be classified as a quasi-satellite of Pluto based on its orbital dynamics, since its orbit is primarily controlled by Neptune with only occasional perturbations by Pluto.<ref name="porter_et_al_2016">{{cite journal |title=The First High-phase Observations of a KBO: New Horizons Imaging of (15810) 1994 JR1 from the Kuiper Belt |first=Simon B. |last=Porter |display-authors=etal |journal=[[The Astrophysical Journal Letters]] |volume=828 |issue=2 |pages=L15 |date=2016 |arxiv=1605.05376 |bibcode=2016ApJ...828L..15P |doi=10.3847/2041-8205/828/2/L15|s2cid=54507506 |doi-access=free }}</ref><ref name="2016maynasa" /><ref name=analemma />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)