Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projection (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Singular values ==== <math>I-P</math> is also an oblique projection. The singular values of <math>P</math> and <math>I-P</math> can be computed by an [[orthonormal basis]] of <math>A</math>. Let <math>Q_A</math> be an orthonormal basis of <math>A</math> and let <math>Q_A^{\perp}</math> be the [[orthogonal complement]] of <math>Q_A</math>. Denote the singular values of the matrix <math>Q_A^T A (B^T A)^{-1} B^T Q_A^{\perp} </math> by the positive values <math>\gamma_1 \ge \gamma_2 \ge \ldots \ge \gamma_k </math>. With this, the singular values for <math>P</math> are:<ref>{{Citation | last1 = Brust | first1 = J. J. | last2 = Marcia | first2 = R. F. | last3 = Petra | first3 = C. G. | date = 2020 | title = Computationally Efficient Decompositions of Oblique Projection Matrices | journal = SIAM Journal on Matrix Analysis and Applications | volume = 41 | issue = 2 | pages = 852β870 | doi=10.1137/19M1288115 | osti = 1680061 | s2cid = 219921214 }}</ref> <math display="block">\sigma_i = \begin{cases} \sqrt{1+\gamma_i^2} & 1 \le i \le k \\ 0 & \text{otherwise} \end{cases} </math> and the singular values for <math>I-P</math> are <math display="block">\sigma_i = \begin{cases} \sqrt{1+\gamma_i^2} & 1 \le i \le k \\ 1 & k+1 \le i \le n-k \\ 0 & \text{otherwise} \end{cases} </math> This implies that the largest singular values of <math>P</math> and <math>I-P</math> are equal, and thus that the [[matrix norm]] of the oblique projections are the same. However, the [[condition number]] satisfies the relation <math>\kappa(I-P) = \frac{\sigma_1}{1} \ge \frac{\sigma_1}{\sigma_k} = \kappa(P)</math>, and is therefore not necessarily equal.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)