Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantitative structure–activity relationship
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Applications === (Q)SAR models have been used for [[risk management]]. QSARS are suggested by regulatory authorities; in the [[European Union]], QSARs are suggested by the [[Registration, Evaluation, Authorisation and Restriction of Chemicals|REACH]] regulation, where "REACH" abbreviates "Registration, Evaluation, Authorisation and Restriction of Chemicals". Regulatory application of QSAR methods includes ''in silico'' toxicological assessment of genotoxic impurities.<ref>{{Cite journal|last1=Fioravanzo|first1=E.|last2=Bassan|first2=A.|last3=Pavan|first3=M.|last4=Mostrag-Szlichtyng|first4=A.|last5=Worth|first5=A. P.|date=2012-04-01|title=Role of in silico genotoxicity tools in the regulatory assessment of pharmaceutical impurities|journal=SAR and QSAR in Environmental Research|volume=23|issue=3–4|pages=257–277|doi=10.1080/1062936X.2012.657236|issn=1062-936X|pmid=22369620|s2cid=2714861}}</ref> Commonly used QSAR assessment software such as DEREK or CASE Ultra (MultiCASE) is used to genotoxicity of impurity according to ICH M7.<ref>ICH M7 Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk - Scientific guideline [https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential]</ref> The chemical descriptor space whose [[convex hull]] is generated by a particular training set of chemicals is called the training set's [[applicability domain]]. Prediction of properties of novel chemicals that are located outside the applicability domain uses [[extrapolation]], and so is less reliable (on average) than prediction within the applicability domain. The assessment of the reliability of QSAR predictions remains a research topic.{{cn|date=March 2024}} The QSAR equations can be used to predict biological activities of newer molecules before their synthesis. Examples of machine learning tools for QSAR modeling include:<ref name="pmid25448759">{{cite journal | vauthors = Lavecchia A | title = Machine-learning approaches in drug discovery: methods and applications | journal = Drug Discovery Today | volume = 20 | issue = 3 | pages = 318–31 | date = Mar 2015 | pmid = 25448759 | doi = 10.1016/j.drudis.2014.10.012 }}</ref> {| class="wikitable" |- ! S.No. !! Name !! Algorithms !! External link |- | 1. || R || RF, SVM, Naïve Bayesian, and ANN || {{cite web | url = http://www.r-project.org/ | title = R: The R Project for Statistical Computing }} |- | 2. || libSVM || SVM || {{cite web | url = https://www.csie.ntu.edu.tw/~cjlin/libsvm/ | title = LIBSVM -- A Library for Support Vector Machines }} |- | 3. || Orange || RF, SVM, and Naïve Bayesian || {{cite web | url = http://www.ailab.si/orange/ | title = Orange Data Mining }} |- | 4. || RapidMiner || SVM, RF, Naïve Bayes, DT, ANN, and k-NN || {{cite web | url = http://rapid-i.com/ | title = RapidMiner | #1 Open Source Predictive Analytics Platform }} |- | 5. || Weka || RF, SVM, and Naïve Bayes || {{cite web | url = http://www.cs.waikato.ac.nz/ml/weka/ | title = Weka 3 - Data Mining with Open Source Machine Learning Software in Java | access-date = 2016-03-24 | archive-date = 2011-10-28 | archive-url = https://web.archive.org/web/20111028090649/http://www.cs.waikato.ac.nz/ml/weka/ | url-status = dead }} |- | 6. || Knime || DT, Naïve Bayes, and SVM || {{cite web | url = http://www.knime.org/ | title = KNIME | Open for Innovation }} |- | 7. || AZOrange<ref name="pmid21798025">{{cite journal | vauthors = Stålring JC, Carlsson LA, Almeida P, Boyer S | title = AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment | journal = Journal of Cheminformatics | volume = 3 | pages = 28 | year = 2011 | pmid = 21798025 | pmc = 3158423 | doi = 10.1186/1758-2946-3-28 | doi-access = free }}</ref> || RT, SVM, ANN, and RF || {{cite web | url = https://github.com/AZcompTox/AZOrange | title = AZCompTox/AZOrange: AstraZeneca add-ons to Orange. | work = GitHub | date = 2018-09-19 }} |- | 8. || Tanagra || SVM, RF, Naïve Bayes, and DT || {{cite web | url = http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html | title = TANAGRA - A free DATA MINING software for teaching and research | access-date = 2016-03-24 | archive-date = 2017-12-19 | archive-url = https://web.archive.org/web/20171219194223/http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html | url-status = dead }} |- | 9. || Elki || k-NN || {{cite web | url = http://elki.dbs.ifi.lmu.de/++ | title = ELKI Data Mining Framework | archive-url = https://web.archive.org/web/20161119100656/http://elki.dbs.ifi.lmu.de/ | archive-date = 2016-11-19 | url-status = dead }} |- | 10. || MALLET || || {{cite web | url = http://mallet.cs.umass.edu/ | title = MALLET homepage }} |- | 11. || MOA || || {{cite web | url = http://moa.cms.waikato.ac.nz/+ | title = MOA Massive Online Analysis | Real Time Analytics for Data Streams | archive-url = https://web.archive.org/web/20170619113241/http://moa.cms.waikato.ac.nz/ | archive-date = 2017-06-19 | url-status = dead }} |- | 12. || Deep Chem || Logistic Regression, Naive Bayes, RF, ANN, and others || {{cite web|title=DeepChem|url=https://deepchem.io/|website=deepchem.io|access-date=20 October 2017}} |- | 13. || alvaModel<ref name="issn1422-0067">{{cite journal |last1=Mauri |first1=Andrea |last2=Bertola |first2=Matteo| title = Alvascience: A New Software Suite for the QSAR Workflow Applied to the Blood–Brain Barrier Permeability | journal = International Journal of Molecular Sciences | volume = 23 | issue= 12882 | year = 2022 |page=12882 | doi = 10.3390/ijms232112882 |pmid=36361669 |pmc=9655980 |doi-access=free }}</ref> || Regression ([[Ordinary least squares|OLS]], [[Partial least squares regression|PLS]], [[K-nearest neighbors algorithm|k-NN]], [[Support-vector machine|SVM]] and Consensus) and Classification ([[Linear discriminant analysis|LDA/QDA]], [[Partial least squares regression|PLS-DA]], [[K-nearest neighbors algorithm|k-NN]], [[Support-vector machine|SVM]] and Consensus) || {{cite web | title=alvaModel: a software tool to create QSAR/QSPR models | url=https://www.alvascience.com/alvamodel/ | website=alvascience.com}} |- | 14. ||[[scikit-learn]] ([[Python (programming language)|Python]]) <ref name="sklearn">{{cite journal |author1=Fabian Pedregosa |author2=Gaël Varoquaux |author3=Alexandre Gramfort |author4=Vincent Michel |author5=Bertrand Thirion |author6=Olivier Grisel |author7=Mathieu Blondel |author8=Peter Prettenhofer |author9=Ron Weiss |author10=Vincent Dubourg |author11=Jake Vanderplas |author12=Alexandre Passos |author13=David Cournapeau |author14=Matthieu Perrot |author15=Édouard Duchesnay |title=scikit-learn: Machine Learning in Python |journal=Journal of Machine Learning Research |year=2011 |volume=12 |pages=2825–2830 |url=http://jmlr.org/papers/v12/pedregosa11a.html }}</ref>|| Logistic Regression, Naive Bayes, kNN, RF, SVM, GP, ANN, and others || {{cite web|title=SciKit-Learn|url=https://scikit-learn.org/stable/index.html#|website=scikit-learn.org|access-date=13 August 2023}} |- |15. |Scikit-Mol<ref>{{Citation |last=Bjerrum |first=Esben Jannik |title=Scikit-Mol brings cheminformatics to Scikit-Learn |date=2023-12-06 |url=https://chemrxiv.org/engage/chemrxiv/article-details/60ef0fc58825826143a82cc0 |access-date=2025-01-17 |language=en |doi=10.26434/chemrxiv-2023-fzqwd |last2=Bachorz |first2=Rafał Adam |last3=Bitton |first3=Adrien |last4=Choung |first4=Oh-hyeon |last5=Chen |first5=Ya |last6=Esposito |first6=Carmen |last7=Ha |first7=Son Viet |last8=Poehlmann |first8=Andreas}}</ref> |Integration of [[Scikit-learn]] models and [[RDKit]] featurization |[https://pypi.org/project/scikit-mol/ scikit-mol] on pypi.org |- | 16. || scikit-fingerprints<ref>Adamczyk, J., & Ludynia, P. (2024). Scikit-fingerprints: Easy and efficient computation of molecular fingerprints in Python. SoftwareX, 28, 101944. https://doi.org/https://doi.org/10.1016/j.softx.2024.101944</ref> || [[Molecular_descriptor|Molecular fingerprints]], API compatible with [[Scikit-learn]] models || {{cite web|title=scikit-fingerprints|url=https://github.com/scikit-fingerprints/scikit-fingerprints|access-date=29 December 2024}} |- | 17. || DTC Lab Tools || Multiple Linear Regression, Partial Least Squares, Applicability Domain, Validation, and others || {{cite web|title=DTCLab Tools|url=https://teqip.jdvu.ac.in/QSAR_Tools/|access-date=12 May 2025}} |- | 18. || DTC Lab Supplementary Tools || Quantitative Read-across, q-RASAR, ARKA, Regression and Classification-based ML tools, and others || {{cite web|title=DTCLab Supplementary Tools|url=https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/|access-date=12 May 2025}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)