Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum turbulence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Detection of quantum turbulence === In classical turbulence, one usually measures the velocity, either at a fixed position against time (typical of physical experiments) or at the same time at many positions (typical of numerical simulations). Quantum turbulence is characterised by a disordered tangle of discrete (individual) vortex lines. In helium II techniques exists to measure the vortex line density <math>L</math> (the length of vortex lines per unit volume based on detecting the second sound attenuation. The average distance between vortex lines, <math>\ell</math>, can be found in terms of the vortex line density as <math>\ell = 1/\sqrt{L}</math> . ==== Detection in helium II ==== * Measuring the attenuation of second sound waves * Measuring temperature or pressure gradients <ref>{{Cite journal|last1=Walstrom|first1=P. L.|last2=Weisend II|first2=J. G.|last3=Maddocks|first3=J. R.|last4=Van Sciver|first4=S. W.|date=1988-02-01|title=Turbulent flow pressure drop in various He II transfer system components|url=https://www.sciencedirect.com/science/article/abs/pii/0011227588900549|journal=Cryogenics|language=en|volume=28|issue=2|pages=101β109|doi=10.1016/0011-2275(88)90054-9|bibcode=1988Cryo...28..101W |issn=0011-2275}}</ref> * Measuring ions trapped in the vortices<ref>{{Cite journal|last1=Milliken|first1=F. P.|last2=Schwarz|first2=K. W.|last3=Smith|first3=C. W.|date=1982-04-26|title=Free Decay of Superfluid Turbulence|url=https://link.aps.org/doi/10.1103/PhysRevLett.48.1204|journal=Physical Review Letters|volume=48|issue=17|pages=1204β1207|doi=10.1103/PhysRevLett.48.1204|bibcode=1982PhRvL..48.1204M }}</ref> * Using tracer particles (small glass or plastic spheres/solid hydrogen snowballs) of size of the order of a micron, and then imaging them using lasers. Techniques that can be used are PIV (particle image velocimetry) or PTV (particle tracking velocimetry). Most recently, excimer helium molecules have been used <ref>{{Cite journal|last1=Bewley|first1=G. P.|last2=Lathrop|first2=D. P.|last3=Sreenivasan|first3=K. R.|date=June 2006|title=Visualization of quantized vortices|journal=Nature|language=en|volume=441|issue=7093|pages=588|doi=10.1038/441588a|pmid=16738652|bibcode=2006Natur.441..588B |issn=1476-4687|doi-access=free}}</ref><ref>{{Cite journal|last1=Chagovets|first1=T. V.|last2=Van Sciver|first2=S. W.|date=2011-10-01|title=A study of thermal counterflow using particle tracking velocimetry|url=https://aip.scitation.org/doi/10.1063/1.3657084|journal=Physics of Fluids|volume=23|issue=10|pages=107102β107102β5|doi=10.1063/1.3657084|bibcode=2011PhFl...23j7102C |issn=1070-6631}}</ref><ref>{{Cite journal|last1=Mantia|first1=M. La|last2=Duda|first2=D.|last3=Rotter|first3=M.|last4=Skrbek|first4=L.|date=February 2013|title=Lagrangian accelerations of particles in superfluid turbulence|url=https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/lagrangian-accelerations-of-particles-in-superfluid-turbulence/DC096198052DFC55296AE510CB074C50|journal=Journal of Fluid Mechanics|language=en|volume=717|doi=10.1017/jfm.2013.31|bibcode=2013JFM...717R...9L |s2cid=123402428|issn=0022-1120}}</ref> * Using oscillating forks <ref name=":1" /> * Using cantilevers <ref>{{Cite journal|last1=Salort|first1=J.|last2=Monfardini|first2=A.|last3=Roche|first3=P.-E.|date=2012-12-01|title=Cantilever anemometer based on a superconducting micro-resonator: Application to superfluid turbulence|url=https://aip.scitation.org/doi/10.1063/1.4770119|journal=Review of Scientific Instruments|volume=83|issue=12|pages=125002β125002β6|doi=10.1063/1.4770119|pmid=23278018|bibcode=2012RScI...83l5002S |issn=0034-6748}}</ref> * Using cryogenic hot wires <ref>{{Cite journal|last1=Diribarne|first1=P.|last2=Thibault|first2=P.|last3=Roche|first3=P.|date=2019-10-01|title=Nano-shaped hot-wire for ultra-high resolution anemometry in cryogenic helium|url=https://aip.scitation.org/doi/10.1063/1.5116852|journal=Review of Scientific Instruments|volume=90|issue=10|pages=105004|doi=10.1063/1.5116852|bibcode=2019RScI...90j5004D |s2cid=209972973 |issn=0034-6748}}</ref> ==== Detection in <sup>3</sup>He-B and atomic condensates ==== Quantum turbulence can be detected in <sup>3</sup>He-B in two ways: nuclear magnetic resonance (NMR) <ref>{{Cite journal|last1=Finne|first1=A. P.|last2=Araki|first2=T.|last3=Blaauwgeers|first3=R.|last4=Eltsov|first4=V. B.|last5=Kopnin|first5=N. B.|last6=Krusius|first6=M.|last7=Skrbek|first7=L.|last8=Tsubota|first8=M.|last9=Volovik|first9=G. E.|date=August 2003|title=An intrinsic velocity-independent criterion for superfluid turbulence|url=https://www.nature.com/articles/nature01880|journal=Nature|language=en|volume=424|issue=6952|pages=1022β1025|doi=10.1038/nature01880|pmid=12944960|issn=1476-4687|arxiv=cond-mat/0304586|bibcode=2003Natur.424.1022F |s2cid=11251284}}</ref> and by Andreev scattering of thermal quasiparticles.<ref>{{Cite journal|last1=Fisher|first1=S. N.|last2=Jackson|first2=M. J.|last3=Sergeev|first3=Y. A.|last4=Tsepelin|first4=V.|date=2014-03-25|title=Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B|journal=Proceedings of the National Academy of Sciences|volume=111|issue=Supplement 1|pages=4659β4666|doi=10.1073/pnas.1312543110|pmc=3970857|pmid=24704872|doi-access=free}}</ref> For atomic condensates, it is typical that the condensate must be expanded (by switching off the trapping potential) so that is sufficiently large for an image to be taken. This procedure has a disadvantage as it leads to the condensate being destroyed. The outcome leads to a 2-dimensional image which allows for the study of 2-dimensional quantum turbulence, but imposes a constraint studying 3-dimensional quantum turbulence using this method. Individual quantum vortices have been observed in 3-dimensions, moving and reconnecting using a technique which extracts small fractions of the condensate at a time, allowing for the observation of a time sequence of the same vortex configuration.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)