Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Renormalization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Further reading == === General introduction === * DeDeo, Simon; [https://www.complexityexplorer.org/tutorials/67-introduction-to-renormalization ''Introduction to Renormalization''] (2017). [[Santa Fe Institute]] Complexity Explorer MOOC. Renormalization from a complex systems point of view, including Markov Chains, Cellular Automata, the real space Ising model, the Krohn-Rhodes Theorem, QED, and rate distortion theory. * {{cite journal |doi=10.1119/1.1624112 |arxiv=hep-th/0212049|title=A hint of renormalization|journal=American Journal of Physics|volume=72|issue=2|pages=170–184|year=2004|last1=Delamotte|first1=Bertrand|bibcode=2004AmJPh..72..170D|s2cid=2506712}} * Baez, John; [http://math.ucr.edu/home/baez/renormalization.html ''Renormalization Made Easy''], (2005). A qualitative introduction to the subject. * Blechman, Andrew E.; [https://web.archive.org/web/20160801034555/http://www.pha.jhu.edu/~blechman/papers/renormalization/renormalization.pdf ''Renormalization: Our Greatly Misunderstood Friend''], (2002). Summary of a lecture; has more information about specific regularization and divergence-subtraction schemes. * {{cite journal |doi=10.1007/BF01255832|title=The conceptual foundations and the philosophical aspects of renormalization theory|journal=Synthese|volume=97|pages=33–108|year=1993|last1=Cao|first1=Tian Yu|last2=Schweber|first2=Silvan S.|s2cid=46968305}} * [[Dmitry Shirkov|Shirkov, Dmitry]]; ''Fifty Years of the Renormalization Group'', C.E.R.N. Courrier 41(7) (2001). Full text available at : [http://www.cerncourier.com/main/article/41/7/14 ''I.O.P Magazines'']. * E. Elizalde; ''Zeta regularization techniques with Applications''. === Mainly: quantum field theory === *[[Nikolay Bogoliubov|N. N. Bogoliubov]], [[Dmitry Shirkov|D. V. Shirkov]] (1959): ''The Theory of Quantized Fields''. New York, Interscience. The first text-book on the [[renormalization group]] theory. * Ryder, Lewis H.; ''Quantum Field Theory '' (Cambridge University Press, 1985), {{ISBN|0-521-33859-X}} Highly readable textbook, certainly the best introduction to relativistic Q.F.T. for particle physics. * Zee, Anthony; ''Quantum Field Theory in a Nutshell'', Princeton University Press (2003) {{ISBN|0-691-01019-6}}. Another excellent textbook on Q.F.T. * Weinberg, Steven; ''The Quantum Theory of Fields'' (3 volumes) Cambridge University Press (1995). A monumental treatise on Q.F.T. written by a leading expert, [http://nobelprize.org/physics/laureates/1979/weinberg-lecture.html ''Nobel laureate 1979'']. * Pokorski, Stefan; ''Gauge Field Theories'', Cambridge University Press (1987) {{ISBN|0-521-47816-2}}. * 't Hooft, Gerard; ''The Glorious Days of Physics – Renormalization of Gauge theories'', lecture given at Erice (August/September 1998) by the [http://nobelprize.org/physics/laureates/1999/thooft-autobio.html ''Nobel laureate 1999''] . Full text available at: [https://arxiv.org/abs/hep-th/9812203 ''hep-th/9812203'']. * Rivasseau, Vincent; ''An introduction to renormalization'', Poincaré Seminar (Paris, Oct. 12, 2002), published in : Duplantier, Bertrand; Rivasseau, Vincent (Eds.); ''Poincaré Seminar 2002'', Progress in Mathematical Physics 30, Birkhäuser (2003) {{ISBN|3-7643-0579-7}}. Full text available in [http://www.bourbaphy.fr/Rivasseau.ps ''PostScript'']. * Rivasseau, Vincent; ''From perturbative to constructive renormalization'', Princeton University Press (1991) {{ISBN|0-691-08530-7}}. Full text available in [http://cpth.polytechnique.fr/cpth/rivass/articles/book.ps ''PostScript'']{{Dead link|date=October 2022 |bot=InternetArchiveBot |fix-attempted=yes }} and in [http://www.rivasseau.com/resources/book.pdf PDF (draft version)]. <!-- PDF link from author's homepage: http://www.rivasseau.com/3.html --> * Iagolnitzer, Daniel & Magnen, J.; ''Renormalization group analysis'', Encyclopaedia of Mathematics, Kluwer Academic Publisher (1996). Full text available in PostScript and pdf [https://web.archive.org/web/20060630015233/http://www-spht.cea.fr/articles/t96/037/ ''here'']. * Scharf, Günter; ''Finite quantum electrodynamics: The causal approach'', Springer Verlag Berlin Heidelberg New York (1995) {{ISBN|3-540-60142-2}}. * A. S. Švarc ([[Albert Schwarz]]), Математические основы квантовой теории поля, (Mathematical aspects of quantum field theory), Atomizdat, Moscow, 1975. 368 pp. === Mainly: statistical physics === * A. N. Vasil'ev; ''The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics'' (Routledge Chapman & Hall 2004); {{ISBN|978-0-415-31002-4}} * [[Nigel Goldenfeld]]; ''Lectures on Phase Transitions and the Renormalization Group'', Frontiers in Physics 85, Westview Press (June, 1992) {{ISBN|0-201-55409-7}}. Covering the elementary aspects of the physics of phases transitions and the renormalization group, this popular book emphasizes understanding and clarity rather than technical manipulations. * Zinn-Justin, Jean; ''Quantum Field Theory and Critical Phenomena'', Oxford University Press (4th edition – 2002) {{ISBN|0-19-850923-5}}. A masterpiece on applications of renormalization methods to the calculation of critical exponents in statistical mechanics, following Wilson's ideas (Kenneth Wilson was [http://nobelprize.org/physics/laureates/1982/wilson-autobio.html ''Nobel laureate 1982'']). * Zinn-Justin, Jean; ''Phase Transitions & Renormalization Group: from Theory to Numbers'', Poincaré Seminar (Paris, Oct. 12, 2002), published in : Duplantier, Bertrand; Rivasseau, Vincent (Eds.); ''Poincaré Seminar 2002'', Progress in Mathematical Physics 30, Birkhäuser (2003) {{ISBN|3-7643-0579-7}}. Full text available in [http://parthe.lpthe.jussieu.fr/poincare/textes/octobre2002/Zinn.ps ''PostScript''] {{Webarchive|url=https://web.archive.org/web/20051015150706/http://parthe.lpthe.jussieu.fr/poincare/textes/octobre2002/Zinn.ps |date=October 15, 2005 }}. * Domb, Cyril; ''The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena'', CRC Press (March, 1996) {{ISBN|0-7484-0435-X}}. * Brown, Laurie M. (Ed.); ''Renormalization: From Lorentz to Landau (and Beyond)'', Springer-Verlag (New York-1993) {{ISBN|0-387-97933-6}}. * [[John Cardy|Cardy, John]]; ''Scaling and Renormalization in Statistical Physics'', Cambridge University Press (1996) {{ISBN|0-521-49959-3}}. === Miscellaneous === * [[Dmitry Shirkov|Shirkov, Dmitry]]; ''The Bogoliubov Renormalization Group'', JINR Communication E2-96-15 (1996). Full text available at: [https://arxiv.org/abs/hep-th/9602024 ''hep-th/9602024''] * Zinn-Justin, Jean; ''Renormalization and renormalization group: From the discovery of UV divergences to the concept of effective field theories'', in: de Witt-Morette C., Zuber J.-B. (eds), Proceedings of the NATO ASI on ''Quantum Field Theory: Perspective and Prospective'', June 15–26, 1998, Les Houches, France, Kluwer Academic Publishers, NATO ASI Series C 530, 375–388 (1999). Full text available in [http://www-spht.cea.fr/articles/t98/118/ ''PostScript'']. * Connes, Alain; ''Symétries Galoisiennes & Renormalisation'', Poincaré Seminar (Paris, Oct. 12, 2002), published in : Duplantier, Bertrand; Rivasseau, Vincent (Eds.); ''Poincaré Seminar 2002'', Progress in Mathematical Physics 30, Birkhäuser (2003) {{ISBN|3-7643-0579-7}}. French mathematician [http://www.alainconnes.org ''Alain Connes''] (Fields medallist 1982) describe the mathematical underlying structure (the [[Hopf algebra]]) of renormalization, and its link to the Riemann-Hilbert problem. Full text (in French) available at {{ArXiv|math/0211199}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)