Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Dirichlet series=== An extension of the area of convergence can be obtained by rearranging the original series.<ref name="Knopp">{{cite book|first=Konrad|last=Knopp|title=Theory of Functions, Part Two|url=https://archive.org/details/in.ernet.dli.2015.212186|date=1947|pages=[https://archive.org/details/in.ernet.dli.2015.212186/page/n57/mode/2up 51β55]|publisher=New York, Dover publications}}</ref> The series :<math>\zeta(s)=\frac{1}{s-1}\sum_{n=1}^\infty \left(\frac{n}{(n+1)^s}-\frac{n-s}{n^s}\right)</math> converges for {{math|Re(''s'') > 0}}, while :<math>\zeta(s) =\frac{1}{s-1}\sum_{n=1}^\infty\frac{n(n+1)}{2}\left(\frac{2n+3+s}{(n+1)^{s+2}}-\frac{2n-1-s}{n^{s+2}}\right)</math> converge even for {{math|Re(''s'') > β1}}. In this way, the area of convergence can be extended to {{math|Re(''s'') > β''k''}} for any negative integer {{math|β''k''}}. The recurrence connection is clearly visible from the expression valid for {{math|Re(''s'') > β2}} enabling further expansion by integration by parts. :<math>\begin{aligned} \zeta(s)= & 1+\frac{1}{s-1}-\frac{s}{2 !}[\zeta(s+1)-1] \\ - & \frac{s(s+1)}{3 !}[\zeta(s+2)-1] \\ & -\frac{s(s+1)(s+2)}{3 !} \sum_{n=1}^{\infty} \int_0^1 \frac{t^3 d t}{(n+t)^{s+3}} \end{aligned}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)