Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simple continued fraction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Non-simple continued fraction== {{main|Continued fraction (non-simple)}} A non-simple continued fraction is an expression of the form :<math>x = b_0 + \cfrac{a_1}{b_1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cfrac{a_4}{b_4 + \ddots\,}}}}</math> where the ''a''<sub>''n''</sub> (''n'' > 0) are the partial numerators, the ''b''<sub>''n''</sub> are the partial denominators, and the leading term ''b''<sub>0</sub> is called the ''integer'' part of the continued fraction. To illustrate the use of non-simple continued fractions, consider the following example. The sequence of partial denominators of the simple continued fraction of {{pi}} does not show any obvious pattern: :<math>\pi=[3;7,15,1,292,1,1,1,2,1,3,1,\ldots]</math> or :<math>\pi=3+\cfrac{1}{7+\cfrac{1}{15+\cfrac{1}{1+\cfrac{1}{292+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{3+\cfrac{1}{1+\ddots}}}}}}}}}}}</math> However, several non-simple continued fractions for {{pi}} have a perfectly regular structure, such as: :<math> \pi=\cfrac{4}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}} =\cfrac{4}{1+\cfrac{1^2}{3+\cfrac{2^2}{5+\cfrac{3^2}{7+\cfrac{4^2}{9+\ddots}}}}} =3+\cfrac{1^2}{6+\cfrac{3^2}{6+\cfrac{5^2}{6+\cfrac{7^2}{6+\cfrac{9^2}{6+\ddots}}}}} </math> :<math>\displaystyle \pi=2+\cfrac{2}{1+\cfrac{1}{1/2+\cfrac{1}{1/3+\cfrac{1}{1/4+\ddots}}}}=2+\cfrac{2}{1+\cfrac{1\cdot2}{1+\cfrac{2\cdot3}{1+\cfrac{3\cdot4}{1+\ddots}}}}</math> :<math> \displaystyle \pi=2+\cfrac{4}{3+\cfrac{1\cdot3}{4+\cfrac{3\cdot5}{4+\cfrac{5\cdot7}{4+\ddots}}}}</math> The first two of these are special cases of the [[Inverse trigonometric functions#Variant: Continued fractions for arctangent|arctangent]] function with {{pi}} = 4βarctanβ(1) and the fourth and fifth one can be derived using the [[Wallis product]].{{sfn|Bunder|Tonien|2017}}{{sfn|Scheinerman|Pickett|Coleman|2008}} :<math> \pi=3+\cfrac{1}{6+\cfrac{1^3+2^3}{6\cdot1^2+1^2\cfrac{1^3+2^3+3^3+4^3}{6\cdot2^2+2^2\cfrac{1^3+2^3 +3^3+4^3+5^3+6^3}{6\cdot3^2+3^2\cfrac{1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3}{6\cdot4^2+\ddots}}}}} </math> The continued fraction of <math>\pi</math> above consisting of cubes uses the Nilakantha series and an exploit from Leonhard Euler.{{sfn|Foster|2015}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)