Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
System of linear equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Row reduction=== {{Main|Gaussian elimination}} In '''row reduction''' (also known as '''Gaussian elimination'''), the linear system is represented as an [[augmented matrix]]{{sfnp|Beauregard|Fraleigh|1973|p=68}} :<math>\left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 3 & 5 & 6 & 7 \\ 2 & 4 & 3 & 8 \end{array}\right]\text{.} </math> This matrix is then modified using [[elementary row operations]] until it reaches [[reduced row echelon form]]. There are three types of elementary row operations:{{sfnp|Beauregard|Fraleigh|1973|p=68}} :'''Type 1''': Swap the positions of two rows. :'''Type 2''': Multiply a row by a nonzero [[scalar (mathematics)|scalar]]. :'''Type 3''': Add to one row a scalar multiple of another. Because these operations are reversible, the augmented matrix produced always represents a linear system that is equivalent to the original. There are several specific algorithms to row-reduce an augmented matrix, the simplest of which are [[Gaussian elimination]] and [[Gauss–Jordan elimination]]. The following computation shows Gauss–Jordan elimination applied to the matrix above: :<math>\begin{align}\left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 3 & 5 & 6 & 7 \\ 2 & 4 & 3 & 8 \end{array}\right]&\sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & -4 & 12 & -8 \\ 2 & 4 & 3 & 8 \end{array}\right]\sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & -4 & 12 & -8 \\ 0 & -2 & 7 & -2 \end{array}\right]\sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & 1 & -3 & 2 \\ 0 & -2 & 7 & -2 \end{array}\right] \\ &\sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & 2 \end{array}\right]\sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{array}\right]\sim \left[\begin{array}{rrr|r} 1 & 3 & 0 & 9 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{array}\right]\sim \left[\begin{array}{rrr|r} 1 & 0 & 0 & -15 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{array}\right].\end{align}</math> The last matrix is in reduced row echelon form, and represents the system {{nowrap|''x'' {{=}} −15}}, {{nowrap|''y'' {{=}} 8}}, {{nowrap|''z'' {{=}} 2}}. A comparison with the example in the previous section on the algebraic elimination of variables shows that these two methods are in fact the same; the difference lies in how the computations are written down.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)