Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Some series identities== ===Sums with theta function in the result=== The infinite sum<ref>Landau (1899)<!-- Vermutl: {{Citation | author = Landau, E. | title = Sur la Série des Invers de Nombres de Fibonacci | journal = Bull. Soc. Math. France | volume = 27 | year = 1899 | pages = 298–300}} --> zitiert nach [[Fibonacci-Folge#Borwein|Borwein]], Page 94, Exercise 3.</ref><ref>{{cite web|access-date=2021-07-18|title=Number-theoretical, combinatorial and integer functions – mpmath 1.1.0 documentation|url=https://mpmath.org/doc/1.1.0/functions/numtheory.html}}<!-- auto-translated by Module:CS1 translator --></ref> of the reciprocals of [[Fibonacci sequence|Fibonacci numbers]] with odd indices has the identity: :<math>\sum_{n=1}^\infty \frac{1}{F_{2n-1}} = \frac{\sqrt{5}}{2}\,\sum_{n=1}^\infty \frac{2(\Phi^{-2})^{n - 1/2}}{1 + (\Phi^{-2})^{2n - 1}} = \frac{\sqrt{5}}{4} \sum_{a=-\infty}^\infty \frac{2(\Phi^{-2})^{a - 1/2}}{1 + (\Phi^{-2})^{2a - 1}} =</math> :<math>= \frac{\sqrt{5}}{4}\,\theta_{2}(\Phi^{-2})^2 = \frac{\sqrt{5}}{8}\bigl[\theta_{3}(\Phi^{-1})^2 - \theta_{4}(\Phi^{-1})^2\bigr]</math> By not using the theta function expression, following identity between two sums can be formulated: :<math>\sum_{n=1}^\infty \frac{1}{F_{2n-1}} = \frac{\sqrt{5}}{4}\,\biggl[ \sum_{n=1}^\infty 2 \,\Phi^{- (2n - 1)^2 /2} \biggr]^2 </math> :<math>\sum_{n=1}^\infty \frac{1}{F_{2n-1}} = 1.82451515740692456814215840626732817332\ldots </math> Also in this case <math> \Phi = \tfrac{1}{2}(\sqrt{5} + 1)</math> is [[Golden ratio]] number again. Infinite sum of the reciprocals of the Fibonacci number squares: :<math>\sum_{n=1}^\infty \frac{1}{F_{n}^2} = \frac{5}{24}\bigl[2\,\theta_{2}(\Phi^{-2})^4 - \theta_{3}(\Phi^{-2})^4 + 1\bigr] = \frac{5}{24}\bigl[\theta_{3}(\Phi^{-2})^4 - 2\,\theta_{4}(\Phi^{-2})^4 + 1\bigr]</math> Infinite sum of the reciprocals of the [[Pell sequence|Pell numbers]] with odd indices: :<math>\sum_{n=1}^\infty \frac{1}{P_{2n-1}} = \frac{1}{\sqrt{2}}\,\theta_{2}\bigl[(\sqrt{2}-1)^2\bigr]^2 = \frac{1}{2\sqrt{2}}\bigl[\theta_{3}(\sqrt{2}-1)^2 - \theta_{4}(\sqrt{2}-1)^2\bigr]</math> ===Sums with theta function in the summand=== The next two series identities were proved by [[István Mező]]:<ref name="Mezo2">{{Citation | last = Mező | first = István | title = Duplication formulae involving Jacobi theta functions and Gosper's {{mvar|q}}-trigonometric functions | journal = [[Proceedings of the American Mathematical Society]] | pages = 2401–2410 | volume = 141 | issue = 7 | year = 2013 | doi=10.1090/s0002-9939-2013-11576-5 | doi-access = free}}</ref> :<math>\begin{align} \theta_4^2(q)&=iq^{\frac14}\sum_{k=-\infty}^\infty q^{2k^2-k}\theta_1\left(\frac{2k-1}{2i}\ln q,q\right),\\[6pt] \theta_4^2(q)&=\sum_{k=-\infty}^\infty q^{2k^2}\theta_4\left(\frac{k\ln q}{i},q\right). \end{align}</math> These relations hold for all {{math|0 < ''q'' < 1}}. Specializing the values of {{mvar|q}}, we have the next parameter free sums :<math>\sqrt{\frac{\pi\sqrt{e^\pi}}{2}}\cdot\frac{1}{\Gamma^2\left(\frac34\right)} =i\sum_{k=-\infty}^\infty e^{\pi\left(k-2k^2\right)} \theta_1 \left(\frac{i\pi}{2}(2k-1),e^{-\pi}\right)</math> :<math>\sqrt{\frac{\pi}{2}}\cdot\frac{1}{\Gamma^2\left(\frac34\right)} =\sum_{k=-\infty}^\infty\frac{\theta_4\left(ik\pi,e^{-\pi}\right)}{e^{2\pi k^2}}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)