Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trace (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Stochastic estimator === The trace can be estimated unbiasedly by "Hutchinson's trick":<ref>{{Cite journal |last=Hutchinson |first=M.F. |date=January 1989 |title=A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines |url=http://www.tandfonline.com/doi/abs/10.1080/03610918908812806 |journal=Communications in Statistics - Simulation and Computation |language=en |volume=18 |issue=3 |pages=1059β1076 |doi=10.1080/03610918908812806 |issn=0361-0918|url-access=subscription }}</ref><blockquote>Given any matrix <math>\boldsymbol W\in \R^{n\times n}</math>, and any random <math>\boldsymbol u\in \R^n</math> with <math>\mathbb E[\boldsymbol u\boldsymbol u^\intercal] = \mathbf I</math>, we have <math>\mathbb E[\boldsymbol u^\intercal\boldsymbol W\boldsymbol u ] = \operatorname{tr}\boldsymbol W</math>. </blockquote> For a proof expand the expectation directly. Usually, the random vector is sampled from <math>\operatorname N(\mathbf 0,\mathbf I)</math> (normal distribution) or <math>\{\pm n^{-1/2}\}^n</math> ([[Rademacher distribution]]). More sophisticated stochastic estimators of trace have been developed.<ref>{{Cite journal |last1=Avron |first1=Haim |last2=Toledo |first2=Sivan |date=2011-04-11 |title=Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix |url=https://doi.org/10.1145/1944345.1944349 |journal=Journal of the ACM |volume=58 |issue=2 |pages=8:1β8:34 |doi=10.1145/1944345.1944349 |s2cid=5827717 |issn=0004-5411}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)