Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Unification (computer science)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Particular background knowledge sets E=== {| |+ '''Used naming conventions''' | {{math|β ''u'',''v'',''w'':}} | align="right" | {{tmath|u*(v*w)}} | {{=}} | {{tmath|(u*v)*w}} | align="center" | '''{{mvar|A}}''' | Associativity of {{tmath|*}} |- | {{math|β ''u'',''v'':}} | align="right" | {{tmath|u*v}} | = | {{tmath|v*u}} | align="center" | '''{{mvar|C}}''' | Commutativity of {{tmath|*}} |- | {{math|β ''u'',''v'',''w'':}} | align="right" | {{tmath|u*(v+w)}} | {{=}} | {{tmath|u*v+u*w}} | align="center" | '''{{mvar|D<sub>l</sub>}}''' | Left distributivity of {{tmath|*}} over {{tmath|+}} |- | {{math|β ''u'',''v'',''w'':}} | align="right" | {{tmath|(v+w)*u}} | {{=}} | {{tmath|v*u+w*u}} | align="center" | '''{{mvar|D<sub>r</sub>}}''' | Right distributivity of {{tmath|*}} over {{tmath|+}} |- | {{math|β ''u'':}} | align="right" | {{tmath|u*u}} | {{=}} | {{mvar|u}} | align="center" | '''{{mvar|I}}''' | Idempotence of {{tmath|*}} |- | {{math|β ''u'':}} | align="right" | {{tmath|n*u}} | {{=}} | {{mvar|u}} | align="center" | '''{{mvar|N<sub>l</sub>}}''' | Left neutral element {{mvar|n}} with respect to {{tmath|*}} |- | {{math|β ''u'':}} | align="right" | {{tmath|u*n}} | {{=}} | {{mvar|u}} | align="center" | '''{{mvar|N<sub>r</sub>}}''' | Right neutral element {{mvar|n}} with respect to {{tmath|*}} |} It is said that ''unification is decidable'' for a theory, if a unification algorithm has been devised for it that terminates for ''any'' input problem. It is said that ''unification is [[semi-decidable]]'' for a theory, if a unification algorithm has been devised for it that terminates for any ''solvable'' input problem, but may keep searching forever for solutions of an unsolvable input problem. ''Unification is decidable'' for the following theories: * '''{{mvar|A}}'''<ref>[[Gordon D. Plotkin]], ''Lattice Theoretic Properties of Subsumption'', Memorandum MIP-R-77, Univ. Edinburgh, Jun 1970</ref> * '''{{mvar|A}}''','''{{mvar|C}}'''<ref>[[Mark E. Stickel]], ''A Unification Algorithm for Associative-Commutative Functions'', Journal of the Association for Computing Machinery, vol.28, no.3, pp. 423β434, 1981</ref> * '''{{mvar|A}}''','''{{mvar|C}}''','''{{mvar|I}}'''<ref name="Fages.1987">F. Fages, ''Associative-Commutative Unification'', J. Symbolic Comput., vol.3, no.3, pp. 257β275, 1987</ref> * '''{{mvar|A}}''','''{{mvar|C}}''','''{{mvar|N<sub>l</sub>}}'''<ref group=note name="LRequivC">in the presence of equality '''{{mvar|C}}''', equalities '''{{mvar|N<sub>l</sub>}}''' and '''{{mvar|N<sub>r</sub>}}''' are equivalent, similar for '''{{mvar|D<sub>l</sub>}}''' and '''{{mvar|D<sub>r</sub>}}'''</ref><ref name="Fages.1987"/> * '''{{mvar|A}}''','''{{mvar|I}}'''<ref>Franz Baader, ''Unification in Idempotent Semigroups is of Type Zero'', J. Automat. Reasoning, vol.2, no.3, 1986</ref> * '''{{mvar|A}}''','''{{mvar|N<sub>l</sub>}}'''{{mvar|,}}'''{{mvar|N<sub>r</sub>}}''' (monoid)<ref>J. Makanin, ''The Problem of Solvability of Equations in a Free Semi-Group'', Akad. Nauk SSSR, vol.233, no.2, 1977</ref> * '''{{mvar|C}}'''<ref>{{cite journal| author=F. Fages| title=Associative-Commutative Unification| journal=J. Symbolic Comput.| year=1987| volume=3| number=3| pages=257β275| doi=10.1016/s0747-7171(87)80004-4| s2cid=40499266| url=https://hal.inria.fr/inria-00076271/file/RR-0287.pdf}}</ref> * [[Boolean ring]]s<ref>{{cite book| author=Martin, U., Nipkow, T.| chapter=Unification in Boolean Rings| title=Proc. 8th CADE| year=1986| volume=230| pages=506β513| publisher=Springer| editor=JΓΆrg H. Siekmann| series=LNCS}}</ref><ref>{{cite journal|author1=A. Boudet |author2=J.P. Jouannaud |author3=M. Schmidt-SchauΓ | title=Unification of Boolean Rings and Abelian Groups| journal=Journal of Symbolic Computation| year=1989| volume=8|issue=5 | pages=449β477 | doi=10.1016/s0747-7171(89)80054-9| doi-access=free}}</ref> * [[Abelian group]]s, even if the signature is expanded by arbitrary additional symbols (but not axioms)<ref name="Baader and Snyder 2001, p. 486">Baader and Snyder (2001), p. 486.</ref> * [[Kripke semantics#Correspondence and completeness|K4]] [[modal algebra]]s<ref>F. Baader and S. Ghilardi, ''[https://web.archive.org/web/20171223215706/https://pdfs.semanticscholar.org/492e/9f03ab7abd043ed0167dc7309552d21a88ef.pdf Unification in modal and description logics]'', Logic Journal of the IGPL 19 (2011), no. 6, pp. 705β730.</ref> ''Unification is semi-decidable'' for the following theories: * '''{{mvar|A}}''','''{{mvar|D<sub>l</sub>}}'''{{mvar|,}}'''{{mvar|D<sub>r</sub>}}'''<ref>P. Szabo, ''Unifikationstheorie erster Ordnung'' (''First Order Unification Theory''), Thesis, Univ. Karlsruhe, West Germany, 1982</ref> * '''{{mvar|A}}''','''{{mvar|C}}''','''{{mvar|D<sub>l</sub>}}'''<ref group=note name="LRequivC"/><ref>JΓΆrg H. Siekmann, ''Universal Unification'', Proc. 7th Int. Conf. on Automated Deduction, Springer LNCS vol.170, pp. 1β42, 1984</ref> * [[Commutative ring]]s<ref name="Baader and Snyder 2001, p. 486"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)