Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Linear combinations === In general, for the sum of <math>N</math> random variables <math>\{X_1,\dots,X_N\}</math>, the variance becomes: <math display="block">\operatorname{Var}\left(\sum_{i=1}^N X_i\right) = \sum_{i,j=1}^N\operatorname{Cov}(X_i,X_j) = \sum_{i=1}^N\operatorname{Var}(X_i) + \sum_{i,j=1,i\ne j}^N\operatorname{Cov}(X_i,X_j),</math> see also general [[Bienaymé's identity]]. These results lead to the variance of a [[linear combination]] as: <math display="block">\begin{align} \operatorname{Var}\left( \sum_{i=1}^N a_iX_i\right) &=\sum_{i,j=1}^{N} a_ia_j\operatorname{Cov}(X_i,X_j) \\ &= \sum_{i=1}^N a_i^2 \operatorname{Var}(X_i) + \sum_{i \neq j} a_i a_j \operatorname{Cov}(X_i,X_j)\\ &= \sum_{i=1}^N a_i^2 \operatorname{Var}(X_i) + 2 \sum_{1 \leq i < j \leq N} a_i a_j \operatorname{Cov}(X_i,X_j). \end{align}</math> If the random variables <math>X_1,\dots,X_N</math> are such that <math display="block">\operatorname{Cov}(X_i,X_j)=0\ ,\ \forall\ (i\ne j) ,</math> then they are said to be [[Covariance#Definition|uncorrelated]]. It follows immediately from the expression given earlier that if the random variables <math>X_1,\dots,X_N</math> are uncorrelated, then the variance of their sum is equal to the sum of their variances, or, expressed symbolically: <math display="block">\operatorname{Var}\left(\sum_{i=1}^N X_i\right) = \sum_{i=1}^N\operatorname{Var}(X_i).</math> Since independent random variables are always uncorrelated (see {{Section link|Covariance|Uncorrelatedness and independence}}), the equation above holds in particular when the random variables <math>X_1,\dots,X_n</math> are independent. Thus, independence is sufficient but not necessary for the variance of the sum to equal the sum of the variances. ====Matrix notation for the variance of a linear combination==== Define <math>X</math> as a column vector of <math>n</math> random variables <math>X_1, \ldots,X_n</math>, and <math>c</math> as a column vector of <math>n</math> scalars <math>c_1, \ldots,c_n</math>. Therefore, <math>c^\mathsf{T} X</math> is a [[linear combination]] of these random variables, where <math>c^\mathsf{T}</math> denotes the [[transpose]] of <math>c</math>. Also let <math>\Sigma</math> be the [[covariance matrix]] of <math>X</math>. The variance of <math>c^\mathsf{T}X</math> is then given by:<ref>{{Cite book | last1=Johnson | first1=Richard | last2=Wichern | first2=Dean | year=2001 | title=Applied Multivariate Statistical Analysis | url=https://archive.org/details/appliedmultivari00john_130 | url-access=limited | publisher=Prentice Hall | page=[https://archive.org/details/appliedmultivari00john_130/page/n96 76] | isbn=0-13-187715-1 }}</ref> <math display="block">\operatorname{Var}\left(c^\mathsf{T} X\right) = c^\mathsf{T} \Sigma c .</math> This implies that the variance of the mean can be written as (with a column vector of ones) <math display="block">\operatorname{Var}\left(\bar{x}\right) = \operatorname{Var}\left(\frac{1}{n} 1'X\right) = \frac{1}{n^2} 1'\Sigma 1.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)