Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== ===Faà di Bruno's formula=== {{main|Faà di Bruno's formula}} [[Faà di Bruno's formula]] may be stated in terms of Bell polynomials as follows: :<math>{d^n \over dx^n} f(g(x)) = \sum_{k=1}^n f^{(k)}(g(x)) B_{n,k} \left(g'(x),g''(x), \dots, g^{(n-k+1)}(x)\right).</math> Similarly, a power-series version of Faà di Bruno's formula may be stated using Bell polynomials as follows. Suppose :<math>f(x)=\sum_{n=1}^\infty {a_n \over n!} x^n \qquad \text{and} \qquad g(x) = \sum_{n=0}^\infty {b_n \over n!} x^n.</math> Then :<math>g(f(x)) = \sum_{n=1}^\infty \frac{\sum_{k=0}^n b_k B_{n,k}(a_1,\dots,a_{n-k+1})}{n!} x^n.</math> In particular, the complete Bell polynomials appear in the exponential of a [[formal power series]]: :<math>\exp\left(\sum_{i=1}^\infty {a_i \over i!} x^i \right) = \sum_{n=0}^\infty {B_n(a_1,\dots,a_n) \over n!} x^n,</math> which also represents the [[exponential generating function]] of the complete Bell polynomials on a fixed sequence of arguments <math>a_1, a_2, \dots</math>. ===Reversion of series=== {{main|Lagrange inversion theorem}} Let two functions ''f'' and ''g'' be expressed in formal [[power series]] as :<math>f(w) = \sum_{k=0}^\infty f_k \frac{w^k}{k!}, \qquad \text{and} \qquad g(z) = \sum_{k=0}^\infty g_k \frac{z^k}{k!},</math> such that ''g'' is the compositional inverse of ''f'' defined by ''g''(''f''(''w'')) = ''w'' or ''f''(''g''(''z'')) = ''z''. If ''f''<sub>0</sub> = 0 and ''f''<sub>1</sub> ≠ 0, then an explicit form of the coefficients of the inverse can be given in term of Bell polynomials as{{sfn|Charalambides|2002|p=437|loc=Eqn (11.43)}} :<math> g_n = \frac{1}{f_1^n} \sum_{k=1}^{n-1} (-1)^k n^{\bar{k}} B_{n-1,k}(\hat{f}_1,\hat{f}_2,\ldots,\hat{f}_{n-k}), \qquad n \geq 2, </math> with <math> \hat{f}_k = \frac{f_{k+1}}{(k+1)f_{1}},</math> and <math>n^{\bar{k}} = n(n+1)\cdots (n+k-1) </math> is the rising factorial, and <math>g_1 = \frac{1}{f_{1}}. </math> ===Asymptotic expansion of Laplace-type integrals=== Consider the integral of the form :<math>I(\lambda) = \int_a^b e^{-\lambda f(x)} g(x) \, \mathrm{d}x, </math> where (''a'',''b'') is a real (finite or infinite) interval, λ is a large positive parameter and the functions ''f'' and ''g'' are continuous. Let ''f'' have a single minimum in [''a'',''b''] which occurs at ''x'' = ''a''. Assume that as ''x'' → ''a''<sup>+</sup>, :<math> f(x) \sim f(a) + \sum_{k=0}^\infty a_k (x-a)^{k+\alpha}, </math> :<math> g(x) \sim \sum_{k=0}^\infty b_k (x-a)^{k+\beta-1}, </math> with ''α'' > 0, Re(''β'') > 0; and that the expansion of ''f'' can be term wise differentiated. Then, Laplace–Erdelyi theorem states that the asymptotic expansion of the integral ''I''(''λ'') is given by :<math> I(\lambda) \sim e^{-\lambda f(a)} \sum_{n=0}^\infty \Gamma \Big(\frac{n+\beta}{\alpha} \Big) \frac{c_n}{\lambda^{(n+\beta)/\alpha}} \qquad \text{as} \quad \lambda \rightarrow \infty, </math> where the coefficients ''c<sub>n</sub>'' are expressible in terms of ''a<sub>n</sub>'' and ''b<sub>n</sub>'' using partial ''ordinary'' Bell polynomials, as given by Campbell–Froman–Walles–Wojdylo formula: :<math> c_n = \frac{1}{\alpha a_0^{(n+\beta)/\alpha}} \sum_{k=0}^n b_{n-k} \sum_{j=0}^k \binom{-\frac{n+\beta}{\alpha}}{j} \frac{1}{a_0^j} \hat{B}_{k,j}(a_1,a_2,\ldots,a_{k-j+1}). </math> ===Symmetric polynomials=== {{main|Newton's identities}} The [[elementary symmetric polynomial]] <math>e_n</math> and the [[power sum symmetric polynomial]] <math>p_n</math> can be related to each other using Bell polynomials as: : <math> \begin{align} e_n & = \frac{1}{n!}\; B_{n}(p_1, -1! p_2, 2! p_3, -3! p_4, \ldots, (-1)^{n-1}(n-1)! p_n ) \\ & = \frac{(-1)^n}{n!}\; B_{n}(-p_1, -1! p_2, -2! p_3, -3! p_4, \ldots, -(n-1)! p_n ), \end{align} </math> : <math> \begin{align} p_n & = \frac{(-1)^{n-1}}{(n-1)!} \sum_{k=1}^n (-1)^{k-1} (k-1)!\; B_{n,k}(e_1,2! e_2, 3! e_3,\ldots,(n-k+1)! e_{n-k+1}) \\ & = (-1)^n\; n\; \sum_{k=1}^n \frac{1}{k} \; \hat{B}_{n,k}(-e_1,\dots,-e_{n-k+1}). \end{align} </math> These formulae allow one to express the coefficients of monic polynomials in terms of the Bell polynomials of its zeroes. For instance, together with [[Cayley–Hamilton theorem]] they lead to expression of the determinant of a ''n'' × ''n'' square matrix ''A'' in terms of the traces of its powers: : <math> \det (A) = \frac{(-1)^{n}}{n!} B_n(s_1, s_2, \ldots, s_n), ~\qquad \text{where } s_k = - (k - 1)! \operatorname{tr}(A^k).</math> ===Cycle index of symmetric groups=== {{main|Cycle index}} The [[cycle index]] of the [[symmetric group]] <math>S_n</math> can be expressed in terms of complete Bell polynomials as follows: :<math> Z(S_n) = \frac{B_n(0!\,a_1, 1!\,a_2, \dots, (n-1)!\,a_n)}{n!}.</math> ===Moments and cumulants=== The sum :<math>\mu_n' = B_n(\kappa_1,\dots,\kappa_n)=\sum_{k=1}^n B_{n,k}(\kappa_1,\dots,\kappa_{n-k+1})</math> is the ''n''th raw [[moment (mathematics)|moment]] of a [[probability distribution]] whose first ''n'' [[cumulant]]s are ''κ''<sub>1</sub>, ..., ''κ''<sub>''n''</sub>. In other words, the ''n''th moment is the ''n''th complete Bell polynomial evaluated at the first ''n'' cumulants. Likewise, the ''n''th cumulant can be given in terms of the moments as :<math>\kappa_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(\mu'_1,\ldots,\mu'_{n-k+1}).</math> ===Hermite polynomials=== {{main|Hermite polynomials}} [[Hermite polynomials]] can be expressed in terms of Bell polynomials as :<math>\operatorname{He}_n(x) = B_n(x,-1,0,\ldots,0),</math> where ''x''<sub>''i''</sub> = 0 for all ''i'' > 2; thus allowing for a combinatorial interpretation of the coefficients of the Hermite polynomials. This can be seen by comparing the generating function of the Hermite polynomials :<math>\exp \left(xt-\frac{t^2}{2} \right) = \sum_{n=0}^\infty \operatorname{He}_n(x) \frac {t^n}{n!}</math> with that of Bell polynomials. ===Representation of polynomial sequences of binomial type=== For any sequence ''a''<sub>1</sub>, ''a''<sub>2</sub>, …, ''a''<sub>''n''</sub> of scalars, let :<math>p_n(x)= B_n(a_1 x, \ldots, a_n x) = \sum_{k=1}^n B_{n,k}(a_1,\dots,a_{n-k+1}) x^k.</math> Then this polynomial sequence is of [[binomial type]], i.e. it satisfies the binomial identity :<math>p_n(x+y)=\sum_{k=0}^n {n \choose k} p_k(x) p_{n-k}(y).</math> :'''Example:''' For ''a''<sub>1</sub> = … = ''a''<sub>''n''</sub> = 1, the polynomials <math>p_n(x)</math> represent [[Touchard polynomials]]. More generally, we have this result: :'''Theorem:''' All polynomial sequences of binomial type are of this form. If we define a formal power series :<math>h(x)=\sum_{k=1}^\infty {a_k \over k!} x^k,</math> then for all ''n'', :<math>h^{-1}\left( {d \over dx}\right) p_n(x) = n p_{n-1}(x).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)