Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Integrals== Two definite integrals relating the Bernoulli and Euler polynomials to the Bernoulli and Euler numbers are:<ref>{{cite journal |name-list-style=amp |author1=Takashi Agoh |author2=Karl Dilcher |journal=Journal of Mathematical Analysis and Applications |volume=381 |year=2011 |pages=10β16 |title=Integrals of products of Bernoulli polynomials | doi=10.1016/j.jmaa.2011.03.061 |doi-access=free }}</ref> *<math>\int_0^1 B_n(t) B_m(t)\,dt = (-1)^{n-1} \frac{m!\, n!}{(m+n)!} B_{n+m} \quad \text{for } m,n \geq 1 </math> *<math>\int_0^1 E_n(t) E_m(t)\,dt = (-1)^{n} 4 (2^{m+n+2}-1)\frac{m!\,n!}{(m+n+2)!} B_{n+m+2}</math> Another integral formula states<ref>{{cite journal | author=Elaissaoui, Lahoucine | author2=Guennoun, Zine El Abidine | name-list-style=amp | title=Evaluation of log-tangent integrals by series involving ΞΆ(2n+1)| journal=Integral Transforms and Special Functions | language=English | year=2017| volume=28 | issue=6 | pages=460β475 | doi=10.1080/10652469.2017.1312366 | arxiv=1611.01274 | s2cid=119132354 }}</ref> *<math>\int_0^{1}E_{n}\left( x +y\right)\log(\tan \frac{\pi}{2}x)\,dx= n! \sum_{k=1}^{\left\lfloor\frac {n+1}2\right\rfloor} \frac{(-1)^{k-1}}{ \pi^{2k}} \left( 2-2^{-2k} \right)\zeta(2k+1) \frac{y^ {n+1-2k}}{(n +1- 2k)!}</math> with the special case for <math>y=0</math> *<math>\int_0^{1}E_{2n-1}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx= \frac{(-1)^{n-1}(2n-1)!}{\pi^{2n}}\left( 2-2^{-2n} \right)\zeta(2n+1)</math> *<math>\int_0^{1}B_{2n-1}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx= \frac{(-1)^{n-1}}{\pi^{2n}}\frac{2^{2n-2}}{(2n-1)!}\sum_{k=1}^{n}( 2^{2k+1}-1 )\zeta(2k+1)\zeta(2n-2k)</math> *<math>\int_0^{1}E_{2n}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx=\int_0^{1}B_{2n}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx=0</math> *<math>\int_{0}^{1}{{{B}_{2n-1}}\left( x \right)\cot \left( \pi x \right)dx}=\frac{2\left( 2n-1 \right)!}{{{\left( -1 \right)}^{n-1}}{{\left( 2\pi \right)}^{2n-1}}}\zeta \left( 2n-1 \right)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)