Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bisection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Triangle=== ====Medians==== Each of the three [[Median (geometry)|medians]] of a triangle is a line segment going through one [[Vertex (geometry)#Of a polytope|vertex]] and the midpoint of the opposite side, so it bisects that side (though not in general perpendicularly). The three medians intersect each other at a point which is called the [[Centroid#Of triangle and tetrahedron|centroid]] of the triangle, which is its [[center of mass]] if it has uniform density; thus any line through a triangle's centroid and one of its vertices bisects the opposite side. The centroid is twice as close to the midpoint of any one side as it is to the opposite vertex. ====Perpendicular bisectors==== {{main|Circumcircle}} The interior [[perpendicular]] bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at the [[circumcenter]] (the center of the circle through the three vertices). Thus any line through a triangle's circumcenter and perpendicular to a side bisects that side. In an [[acute triangle]] the circumcenter divides the interior perpendicular bisectors of the two shortest sides in equal proportions. In an [[obtuse triangle]] the two shortest sides' perpendicular bisectors (extended beyond their opposite triangle sides to the circumcenter) are divided by their respective intersecting triangle sides in equal proportions.<ref name=Mitchell>Mitchell, Douglas W. (2013), "Perpendicular Bisectors of Triangle Sides", ''Forum Geometricorum'' 13, 53-59. http://forumgeom.fau.edu/FG2013volume13/FG201307.pdf</ref>{{rp|Corollaries 5 and 6}} For any triangle the interior perpendicular bisectors are given by <math>p_a=\tfrac{2aT}{a^2+b^2-c^2},</math> <math>p_b=\tfrac{2bT}{a^2+b^2-c^2},</math> and <math>p_c=\tfrac{2cT}{a^2-b^2+c^2},</math> where the sides are <math>a \ge b \ge c</math> and the area is <math>T.</math><ref name=Mitchell/>{{rp|Thm 2}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)