Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Complexity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == Computational complexity theory is the study of the complexity of problems β that is, the difficulty of [[problem solving|solving]] them. Problems can be classified by complexity class according to the time it takes for an algorithm β usually a computer program β to solve them as a function of the problem size. Some problems are difficult to solve, while others are easy. For example, some difficult problems need algorithms that take an exponential amount of time in terms of the size of the problem to solve. Take the [[travelling salesman problem]], for example. It can be solved, as denoted in [[Big O notation]], in time <math>O(n^2 2^n)</math> (where ''n'' is the size of the network to visit β the number of cities the travelling salesman must visit exactly once). As the size of the network of cities grows, the time needed to find the route grows (more than) exponentially. Even though a problem may be computationally solvable in principle, in actual practice it may not be that simple. These problems might require large amounts of time or an inordinate amount of space. Computational complexity may be approached from many different aspects. Computational complexity can be investigated on the basis of time, memory or other resources used to solve the problem. Time and space are two of the most important and popular considerations when problems of complexity are analyzed. There exist a certain class of problems that although they are solvable in principle they require so much time or space that it is not practical to attempt to solve them. These problems are called [[Computational complexity theory#Intractability|intractable]]. There is another form of complexity called [[Model of hierarchical complexity|hierarchical complexity]]. It is orthogonal to the forms of complexity discussed so far, which are called horizontal complexity.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)