Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Determinant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Sum=== The determinant of the sum <math>A+B</math> of two square matrices of the same size is not in general expressible in terms of the determinants of ''A'' and of ''B''. However, for [[positive-definite matrix|positive semidefinite matrices]] <math>A</math>, <math>B</math> and <math>C</math> of equal size, <math display=block>\det(A + B + C) + \det(C) \geq \det(A + C) + \det(B + C)\text{,}</math> with the corollary<ref>{{cite arXiv| last1=Lin| first1=Minghua| last2=Sra|first2=Suvrit|title=Completely strong superadditivity of generalized matrix functions|eprint=1410.1958| class=math.FA| year=2014}}</ref><ref>{{cite journal|last1=Paksoy|last2=Turkmen|last3=Zhang|title=Inequalities of Generalized Matrix Functions via Tensor Products|journal=Electronic Journal of Linear Algebra|year=2014|volume=27|pages= 332–341| doi=10.13001/1081-3810.1622|url=https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1062&context=math_facarticles|doi-access=free}}</ref> <math display=block>\det(A + B) \geq \det(A) + \det(B)\text{.}</math> [[Brunn–Minkowski theorem]] implies that the {{mvar|n}}th root of determinant is a [[concave function]], when restricted to [[Hermitian matrix|Hermitian]] positive-definite <math>n\times n</math> matrices.<ref>{{cite web|url=https://mathoverflow.net/questions/42594/concavity-of-det1-n-over-hpd-n|title=Concavity of det<sup><sup>1</sup>/<sub>''n''</sub></sup> over HPD<sub>''n''</sub>.|date=Oct 18, 2010|last1=Serre|first1=Denis|website=MathOverflow}}</ref> Therefore, if {{mvar|A}} and {{mvar|B}} are Hermitian positive-definite <math>n\times n</math> matrices, one has <math display=block>\sqrt[n]{\det(A+B)}\geq\sqrt[n]{\det(A)}+\sqrt[n]{\det(B)},</math> since the {{mvar|n}}th root of the determinant is a [[homogeneous function]]. ==== Sum identity for 2×2 matrices ==== For the special case of <math>2\times 2</math> matrices with complex entries, the determinant of the sum can be written in terms of determinants and traces in the following identity: :<math>\det(A+B) = \det(A) + \det(B) + \text{tr}(A)\text{tr}(B) - \text{tr}(AB).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)