Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Special identity for the lemniscatic case === For the lemniscatic case, the elliptic modulus or specific eccentricity Ξ΅ is equal to half the square root of two. Legendre's identity for the lemniscatic case can be proved as follows: According to the [[Chain rule]] these derivatives hold: : <math>\frac{\mathrm{d}}{\mathrm{d}y} \,K\bigl(\frac{1}{2}\sqrt{2}\bigr) - F\biggl[\arccos (xy);\frac{1}{2}\sqrt{2}\biggr] = \frac{\sqrt{2}\,x}{\sqrt{1 - x^4 y^4}}</math> : <math>\frac{\mathrm{d}}{\mathrm{d}y} \,2E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac {1}{2}\sqrt{2}\bigr) - 2E\biggl[\arccos(xy);\frac{1}{2}\sqrt{2}\biggr] + F\biggl[\arccos(xy );\frac{1}{2}\sqrt{2}\biggr] = \frac{\sqrt{2}\,x^3 y^2}{\sqrt{1 - x^4 y^4}} </math> By using the [[Fundamental theorem of calculus]] these formulas can be generated: : <math>K\bigl(\frac{1}{2}\sqrt{2}\bigr) - F\biggl[\arccos (x);\frac{1}{2}\sqrt{2}\biggr] = \int_{0}^{1} \frac{\sqrt{2}\,x}{\sqrt{1 - x^4 y^4}} \,\mathrm{d}y </math> : <math>2E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac {1}{2}\sqrt{2}\bigr) - 2E\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] + F\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] = \int_{0}^{1} \frac{\sqrt{2}\,x^3 y^2}{\sqrt{1 - x^4 y^4}} \,\mathrm{d}y </math> The [[Linear combination]] of the two now mentioned integrals leads to the following formula: : <math> \frac{\sqrt{2}}{\sqrt{1 - x^4}} \biggl\{2E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac{1}{2}\sqrt{2}\bigr) - 2E\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] + F\biggl[\arccos( x);\frac{1}{2}\sqrt{2}\biggr]\biggr\} \,+ </math> : <math> + \,\frac{\sqrt{2} \,x^2}{\sqrt{1 - x^4}} \biggl\{K\bigl(\frac{1}{2}\sqrt{2}\bigr) - F\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr]\biggr\} = \int_{0}^{1} \frac{2\,x ^3 (y^2 + 1)}{\sqrt{(1 - x^4)(1 - x^4\,y^4)}} \,\mathrm{d}y </math> By forming the original antiderivative related to x from the function now shown using the [[Product rule]] this formula results: : <math> \biggl\{K\bigl(\frac{1}{2}\sqrt{2}\bigr) - F\biggl[\arccos(x);\frac{1}{2}\sqrt{ 2}\biggr]\biggr\}\biggl\{2E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac{1}{2}\sqrt{2 }\bigr) - 2E\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] + F\biggl[\arccos(x);\frac{1}{2} \sqrt{2}\biggr]\biggr\} = </math> : <math> = \int_{0}^{1} \frac{1}{y^2}(y^2 + 1)\biggl[\text{artanh}(y^2) - \text{artanh} \bigl(\frac{\sqrt{1 - x^4}\,y^2}{\sqrt{1 - x^4 y^4}}\bigr)\biggr] \mathrm{d}y </math> If the value <math>x = 1</math> is inserted in this integral identity, then the following identity emerges: : <math> K\bigl(\frac{1}{2}\sqrt{2}\bigr)\biggl[2\,E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl (\frac{1}{2}\sqrt{2}\bigr)\biggr] = \int_{0}^{1} \frac{1}{y^2}(y^2 + 1) \,\text{artanh}(y^2) \,\mathrm{d}y = </math> : <math> = \biggl[2\arctan(y) - \frac{1}{y}(1 - y^2)\,\text{artanh}(y^2)\biggr]_{y = 0}^{y = 1} = 2\arctan(1) = \frac{\pi}{2} </math> This is how this lemniscatic excerpt from Legendre's identity appears: : <math>2E\bigl(\frac{1}{2}\sqrt{2}\bigr)K\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac{1}{2}\sqrt{2}\bigr)^2 = \frac{\pi}{2}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)