Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expectation–maximization algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== E step ==== Given our current estimate of the parameters ''θ''<sup>(''t'')</sup>, the conditional distribution of the ''Z''<sub>''i''</sub> is determined by [[Bayes' theorem]] to be the proportional height of the normal [[probability density function|density]] weighted by ''τ'': : <math>T_{j,i}^{(t)} := \operatorname{P}(Z_i=j \mid X_i=\mathbf{x}_i ;\theta^{(t)}) = \frac{\tau_j^{(t)} \ f(\mathbf{x}_i;\boldsymbol{\mu}_j^{(t)},\Sigma_j^{(t)})}{\tau_1^{(t)} \ f(\mathbf{x}_i;\boldsymbol{\mu}_1^{(t)},\Sigma_1^{(t)}) + \tau_2^{(t)} \ f(\mathbf{x}_i;\boldsymbol{\mu}_2^{(t)},\Sigma_2^{(t)})}.</math> These are called the "membership probabilities", which are normally considered the output of the E step (although this is not the Q function of below). This E step corresponds with setting up this function for Q: : <math>\begin{align}Q(\theta\mid\theta^{(t)}) &= \operatorname{E}_{\mathbf{Z}\mid\mathbf{X}=\mathbf{x};\mathbf{\theta}^{(t)}} [\log L(\theta;\mathbf{x},\mathbf{Z}) ] \\ &= \operatorname{E}_{\mathbf{Z}\mid\mathbf{X}=\mathbf{x};\mathbf{\theta}^{(t)}} [\log \prod_{i=1}^{n}L(\theta;\mathbf{x}_i,Z_i) ] \\ &= \operatorname{E}_{\mathbf{Z}\mid\mathbf{X}=\mathbf{x};\mathbf{\theta}^{(t)}} [\sum_{i=1}^n \log L(\theta;\mathbf{x}_i,Z_i) ] \\ &= \sum_{i=1}^n\operatorname{E}_{Z_i\mid X_i=x_i;\mathbf{\theta}^{(t)}} [\log L(\theta;\mathbf{x}_i,Z_i) ] \\ &= \sum_{i=1}^n \sum_{j=1}^2 P(Z_i =j \mid X_i = \mathbf{x}_i; \theta^{(t)}) \log L(\theta_j;\mathbf{x}_i,j) \\ &= \sum_{i=1}^n \sum_{j=1}^2 T_{j,i}^{(t)} \big[ \log \tau_j -\tfrac{1}{2} \log |\Sigma_j| -\tfrac{1}{2}(\mathbf{x}_i-\boldsymbol{\mu}_j)^\top\Sigma_j^{-1} (\mathbf{x}_i-\boldsymbol{\mu}_j) -\tfrac{d}{2} \log(2\pi) \big]. \end{align}</math> The expectation of <math>\log L(\theta;\mathbf{x}_i,Z_i)</math> inside the sum is taken with respect to the probability density function <math>P(Z_i \mid X_i = \mathbf{x}_i; \theta^{(t)})</math>, which might be different for each <math>\mathbf{x}_i</math> of the training set. Everything in the E step is known before the step is taken except <math>T_{j,i}</math>, which is computed according to the equation at the beginning of the E step section. This full conditional expectation does not need to be calculated in one step, because ''τ'' and '''μ'''/'''Σ''' appear in separate linear terms and can thus be maximized independently.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)