Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Parameter estimation=== The [[maximum likelihood]] estimator for λ is constructed as follows. The [[likelihood function]] for λ, given an [[independent and identically distributed]] sample ''x'' = (''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>) drawn from the variable, is: <math display="block"> L(\lambda) = \prod_{i=1}^n\lambda\exp(-\lambda x_i) = \lambda^n\exp\left(-\lambda \sum_{i=1}^n x_i\right) = \lambda^n\exp\left(-\lambda n\overline{x}\right), </math> where: <math display="block">\overline{x} = \frac{1}{n}\sum_{i=1}^n x_i</math> is the sample mean. The derivative of the likelihood function's logarithm is: <math display="block"> \frac{d}{d\lambda} \ln L(\lambda) = \frac{d}{d\lambda} \left( n \ln\lambda - \lambda n\overline{x} \right) = \frac{n}{\lambda} - n\overline{x}\ \begin{cases} > 0, & 0 < \lambda < \frac{1}{\overline{x}}, \\[8pt] = 0, & \lambda = \frac{1}{\overline{x}}, \\[8pt] < 0, & \lambda > \frac{1}{\overline{x}}. \end{cases} </math> Consequently, the [[maximum likelihood]] estimate for the rate parameter is: <math display="block">\widehat{\lambda}_\text{mle} = \frac{1}{\overline{x}} = \frac{n}{\sum_i x_i}</math> This is {{em|not}} an [[unbiased estimator]] of <math>\lambda,</math> although <math>\overline{x}</math> {{em|is}} an unbiased<ref name="Dean W. Wichern-2007">{{cite book|author1=Richard Arnold Johnson|author2=Dean W. Wichern|title=Applied Multivariate Statistical Analysis|url=https://books.google.com/books?id=gFWcQgAACAAJ|access-date=10 August 2012|year=2007 |publisher=Pearson Prentice Hall|isbn=978-0-13-187715-3}}</ref> MLE<ref>''[http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm NIST/SEMATECH e-Handbook of Statistical Methods]''</ref> estimator of <math>1/\lambda</math> and the distribution mean. The bias of <math> \widehat{\lambda}_\text{mle} </math> is equal to <math display="block">B \equiv \operatorname{E}\left[\left(\widehat{\lambda}_\text{mle} - \lambda\right)\right] = \frac{\lambda}{n - 1} </math> which yields the [[Maximum likelihood estimation#Second-order efficiency after correction for bias|bias-corrected maximum likelihood estimator]] <math display="block">\widehat{\lambda}^*_\text{mle} = \widehat{\lambda}_\text{mle} - B.</math> An approximate minimizer of [[mean squared error]] (see also: [[bias–variance tradeoff]]) can be found, assuming a sample size greater than two, with a correction factor to the MLE: <math display="block">\widehat{\lambda} = \left(\frac{n - 2}{n}\right) \left(\frac{1}{\bar{x}}\right) = \frac{n - 2}{\sum_i x_i}</math> This is derived from the mean and variance of the [[inverse-gamma distribution]], <math display="inline">\mbox{Inv-Gamma}(n, \lambda)</math>.<ref>{{cite journal |first1=Abdulaziz |last1=Elfessi |first2=David M. |last2=Reineke |title=A Bayesian Look at Classical Estimation: The Exponential Distribution |journal=Journal of Statistics Education |volume=9 |issue=1 |year=2001 |doi=10.1080/10691898.2001.11910648|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)