Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Feature selection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Application of feature selection metaheuristics=== This is a survey of the application of feature selection metaheuristics lately used in the literature. This survey was realized by J. Hammon in her 2013 thesis.<ref name="ReferenceA"/> {| class="wikitable sortable" |- ! Application !! Algorithm !! Approach !! Classifier !! [[Evaluation function|Evaluation Function]] !! Reference |- | [[Single-nucleotide polymorphism|SNPs]] || Feature Selection using Feature Similarity || Filter || || r<sup>2</sup> || Phuong 2005<ref name="M. Phuong, Z pages 301-309"/> |- | SNPs || [[Genetic algorithm]] || Wrapper || [[Decision tree learning|Decision Tree]] || Classification accuracy (10-fold) || Shah 2004<ref>{{cite journal | last1 = Shah | first1 = S. C. | last2 = Kusiak | first2 = A. | year = 2004 | title = Data mining and genetic algorithm based gene/SNP selection | journal = Artificial Intelligence in Medicine | volume = 31 | issue = 3| pages = 183–196 | doi = 10.1016/j.artmed.2004.04.002 | pmid = 15302085 }}</ref> |- | SNPs || [[Hill climbing]] || Filter + Wrapper || [[Naive Bayes classifier|Naive Bayesian]] || Predicted residual sum of squares || Long 2007<ref>{{cite journal | last1 = Long | first1 = N. | last2 = Gianola | first2 = D. | last3 = Weigel | first3 = K. A | year = 2011 | title = Dimension reduction and variable selection for genomic selection: application to predicting milk yield in Holsteins | journal = Journal of Animal Breeding and Genetics | volume = 128 | issue = 4| pages = 247–257 | doi=10.1111/j.1439-0388.2011.00917.x| pmid = 21749471 }}</ref> |- | SNPs || [[Simulated annealing]] || || Naive bayesian || Classification accuracy (5-fold) || Ustunkar 2011<ref>{{Cite journal |doi = 10.1007/s11590-011-0419-7|title = Selection of representative SNP sets for genome-wide association studies: A metaheuristic approach|journal = Optimization Letters|volume = 6|issue = 6|pages = 1207–1218|year = 2012|last1 = Üstünkar|first1 = Gürkan|last2 = Özöğür-Akyüz|first2 = Süreyya|last3 = Weber|first3 = Gerhard W.|last4 = Friedrich|first4 = Christoph M.|last5 = Aydın Son|first5 = Yeşim|s2cid = 8075318}}</ref> |- | Segments parole || [[Ant colony optimization algorithms|Ant colony]] || Wrapper || [[Artificial Neural Network]] || [[Mean squared error|MSE]] || Al-ani 2005 {{citation needed|reason=Need RS|date=March 2016}} |- | Marketing || Simulated annealing || Wrapper || Regression || [[Akaike information criterion|AIC]], r<sup>2</sup> || Meiri 2006<ref>{{cite journal |first1=R. |last1=Meiri |first2=J. |last2=Zahavi |title=Using simulated annealing to optimize the feature selection problem in marketing applications |journal=European Journal of Operational Research |volume=171 |issue=3 |pages=842–858 |date=2006 |doi=10.1016/j.ejor.2004.09.010 }}</ref> |- | Economics || Simulated annealing, genetic algorithm || Wrapper || Regression || [[Bayesian information criterion|BIC]] || Kapetanios 2007<ref>{{cite journal |first=G. |last=Kapetanios |title=Variable Selection in Regression Models using Nonstandard Optimisation of Information Criteria |journal=Computational Statistics & Data Analysis |volume=52 |issue=1 |year=2007 |pages=4–15 |doi=10.1016/j.csda.2007.04.006 }}</ref> |- | Spectral Mass || Genetic algorithm || Wrapper || Multiple Linear Regression, [[Partial least squares regression|Partial Least Squares]] || [[root-mean-square error]] of prediction || Broadhurst et al. 1997<ref>{{cite journal |first1=D. |last1=Broadhurst |first2=R. |last2=Goodacre |first3=A. |last3=Jones |first4=J. J. |last4=Rowland |first5=D. B. |last5=Kell |title=Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry |journal=Analytica Chimica Acta |volume=348 |issue=1–3 |pages=71–86 |year=1997 |doi=10.1016/S0003-2670(97)00065-2 |bibcode=1997AcAC..348...71B }}</ref> |- | Spam || [[Particle swarm optimization#Binary, discrete, and combinatorial|Binary PSO]] + [[Mutation (genetic algorithm)|Mutation]] || Wrapper || [[Decision tree]] || weighted cost || Zhang 2014<ref name="sciencedirect.com"/> |- | Microarray || [[Tabu search]] + [[Particle swarm optimization|PSO]] || Wrapper || [[Support Vector Machine]], [[k-nearest neighbors algorithm|K Nearest Neighbors]] || [[Euclidean Distance]] || Chuang 2009<ref>{{cite journal | last1 = Chuang | first1 = L.-Y. | last2 = Yang | first2 = C.-H. | year = 2009 | title = Tabu search and binary particle swarm optimization for feature selection using microarray data | journal = Journal of Computational Biology | volume = 16 | issue = 12| pages = 1689–1703 | doi = 10.1089/cmb.2007.0211 | pmid = 20047491 }}</ref> |- | Microarray || PSO + Genetic algorithm || Wrapper || Support Vector Machine || Classification accuracy (10-fold) || Alba 2007<ref>E. Alba, J. Garia-Nieto, L. Jourdan et E.-G. Talbi. [http://neo.lcc.uma.es/presentacionesCongreso/JMcec2007.pdf Gene Selection in Cancer Classification using PSO-SVM and GA-SVM Hybrid Algorithms.] {{Webarchive|url=https://web.archive.org/web/20160818135718/http://neo.lcc.uma.es/presentacionesCongreso/JMcec2007.pdf |date=2016-08-18 }} Congress on Evolutionary Computation, Singapore: Singapore (2007), 2007</ref> |- | Microarray || Genetic algorithm + [[Iterated local search|Iterated Local Search]] || Embedded || Support Vector Machine || Classification accuracy (10-fold) || Duval 2009<ref name="B. Duval, J pages 201-208">B. Duval, J.-K. Hao et J. C. Hernandez Hernandez. [http://www.info.univ-angers.fr/pub/hao/papers/GECCO09.pdf A memetic algorithm for gene selection and molecular classification of an cancer.] In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pages 201-208, New York, NY, USA, 2009. ACM.</ref> |- | Microarray || Iterated local search || Wrapper || Regression || [[Posterior probability|Posterior Probability]] || Hans 2007<ref>C. Hans, A. Dobra et M. West. [https://www.researchgate.net/profile/Adrian_Dobra/publication/228388856_Shotgun_Stochastic_Search_for_Large_p_Regression/links/02bfe5125185997d06000000.pdf Shotgun stochastic search for 'large p' regression]. Journal of the American Statistical Association, 2007.</ref> |- | Microarray || Genetic algorithm || Wrapper || K Nearest Neighbors || Classification accuracy ([[LOOCV|Leave-one-out cross-validation]]) || Jirapech-Umpai 2005<ref>{{cite journal | last1 = Aitken | first1 = S. | year = 2005 | title = Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes | doi = 10.1186/1471-2105-6-148 | pmid = 15958165 | pmc = 1181625 | journal = BMC Bioinformatics | volume = 6 | issue = 1| page = 148 | doi-access = free }}</ref> |- | Microarray || [[Memetic algorithm|Hybrid genetic algorithm]] || Wrapper || K Nearest Neighbors || Classification accuracy (Leave-one-out cross-validation) || Oh 2004<ref>{{cite journal | last1 = Oh | first1 = I. S. | last2 = Moon | first2 = B. R. | year = 2004 | title = Hybrid genetic algorithms for feature selection | journal = [[IEEE Transactions on Pattern Analysis and Machine Intelligence]] | volume = 26 | issue = 11| pages = 1424–1437 | doi=10.1109/tpami.2004.105| pmid = 15521491 | citeseerx = 10.1.1.467.4179 }}</ref> |- | Microarray || Genetic algorithm || Wrapper || Support Vector Machine || [[Sensitivity and specificity]] || Xuan 2011<ref>{{cite journal | last1 = Xuan | first1 = P. | last2 = Guo | first2 = M. Z. | last3 = Wang | first3 = J. | last4 = Liu | first4 = X. Y. | last5 = Liu | first5 = Y. | year = 2011 | title = Genetic algorithm-based efficient feature selection for classification of pre-miRNAs | journal = Genetics and Molecular Research | volume = 10 | issue = 2| pages = 588–603 | doi = 10.4238/vol10-2gmr969 | pmid = 21491369 | doi-access = free }}</ref> |- | Microarray || Genetic algorithm || Wrapper || All paired Support Vector Machine || Classification accuracy (Leave-one-out cross-validation) || Peng 2003<ref>{{cite journal | last1 = Peng | first1 = S. | year = 2003 | title = Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines | journal = FEBS Letters | volume = 555 | issue = 2| pages = 358–362 | doi=10.1016/s0014-5793(03)01275-4| pmid = 14644442 | doi-access = free | bibcode = 2003FEBSL.555..358P }}</ref> |- | Microarray || Genetic algorithm || Embedded || Support Vector Machine || Classification accuracy (10-fold) || Hernandez 2007<ref>{{cite book |first1=J. C. H. |last1=Hernandez |first2=B. |last2=Duval |first3=J.-K. |last3=Hao |chapter=A Genetic Embedded Approach for Gene Selection and Classification of Microarray Data |title=Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007 |series=Lecture Notes in Computer Science |volume=4447 |pages=90–101 |location=Berlin |year=2007 |publisher=Springer Verlag |isbn=978-3-540-71782-9 |doi=10.1007/978-3-540-71783-6_9 }}</ref> |- | Microarray || Genetic algorithm || Hybrid || Support Vector Machine || Classification accuracy (Leave-one-out cross-validation) || Huerta 2006<ref>{{cite book |first1=E. B. |last1=Huerta |first2=B. |last2=Duval |first3=J.-K. |last3=Hao |chapter=A Hybrid GA/SVM Approach for Gene Selection and Classification of Microarray Data |title=Applications of Evolutionary Computing. EvoWorkshops 2006 |series=Lecture Notes in Computer Science |volume=3907 |pages=34–44 |year=2006 |isbn=978-3-540-33237-4 |doi=10.1007/11732242_4 }}</ref> |- | Microarray || Genetic algorithm || || Support Vector Machine || Classification accuracy (10-fold) || Muni 2006<ref>{{cite journal |first1=D. P. |last1=Muni |first2=N. R. |last2=Pal |first3=J. |last3=Das |title=Genetic programming for simultaneous feature selection and classifier design |journal= IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=36 |issue=1 |pages=106–117 |year=2006 |doi=10.1109/TSMCB.2005.854499 |pmid=16468570 |s2cid=2073035 }}</ref> |- | Microarray || Genetic algorithm || Wrapper || Support Vector Machine || EH-DIALL, CLUMP || Jourdan 2005<ref>{{cite journal |first1=L. |last1=Jourdan |first2=C. |last2=Dhaenens |first3=E.-G. |last3=Talbi |title=Linkage disequilibrium study with a parallel adaptive GA |journal=[[International Journal of Foundations of Computer Science]] |year=2005 |volume=16 |issue=2 |pages=241–260 |doi=10.1142/S0129054105002978 }}</ref> |- |[[Alzheimer's disease]] || [[Welch's t-test]] || Filter || Support vector machine || Classification accuracy (10-fold) || Zhang 2015<ref>{{cite journal|last1=Zhang|first1=Y.|last2=Dong|first2=Z.|last3=Phillips|first3=P.|last4=Wang|first4=S.|title=Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning|journal=Frontiers in Computational Neuroscience|date=2015|volume=9|page=66|doi=10.3389/fncom.2015.00066|pmid=26082713|pmc=4451357|doi-access=free}}</ref> |- |[[Computer vision]] |[https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library Infinite Feature Selection] |Filter |Independent |[[Average Precision]], [[ROC curve#Area under the curve|ROC AUC]] |Roffo 2015<ref>{{Cite book|last1=Roffo|first1=G.|last2=Melzi|first2=S.|last3=Cristani|first3=M.|title=2015 IEEE International Conference on Computer Vision (ICCV) |chapter=Infinite Feature Selection |date=2015-12-01|pages=4202–4210|doi=10.1109/ICCV.2015.478|isbn=978-1-4673-8391-2|s2cid=3223980}}</ref> |- |Microarrays |[https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library Eigenvector Centrality FS] |Filter |Independent |Average Precision, Accuracy, ROC AUC |Roffo & Melzi 2016<ref>{{Cite web|url=http://www.di.uniba.it/~loglisci/NFmcp2016/NFmcp2016_paper_13.pdf|title=Features Selection via Eigenvector Centrality|last1=Roffo|first1=Giorgio|last2=Melzi|first2=Simone|date=September 2016|publisher=NFmcp2016|access-date=12 November 2016}}</ref> |- |XML | Symmetrical Tau (ST) |Filter | Structural Associative Classification |Accuracy, Coverage |Shaharanee & Hadzic 2014 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)