Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group delay and phase delay
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Group delay from transfer function polynomials == If a transfer function or Sij of a [[Scattering parameters|scattering parameter]], is in a polynomial [[Laplace transform]] form, then the [[#Mathematical definition of group delay and phase delay|mathematical definition for group delay]] above may be solved analytically in closed form. A [[polynomial]] [[transfer function]] <math>P(S)</math> may be taken along the <math>j\omega</math> axis and defined as <math>P(j\omega)</math>. <math>\phi(\omega)</math> may be determined from <math>P(j\omega)</math>, and then the group delay may be determined by solving for <math>-d\phi(\omega)|/d\omega</math>. to determine <math>\phi(\omega)</math> from <math>P(j\omega)</math>, use the definition of <math>\phi(\omega) = tan^{-1}(P(j\omega)_{imag}/P(j\omega)_{real})</math>. Given that <math>j^{2N}</math> is always real, and <math>j^{2N+1}</math> is always imaginary, <math>\phi(\omega)</math> may be redefined as <math>\phi(\omega) = tan^{-1}(-jP(j\omega)_{odd}/P(j\omega)_{even})</math> where ''even'' and ''odd'' refer to the polynomials that contain only the even or odd order coefficients respectively. The <math>-j</math> in the numerator merely converts the imaginary <math>P(j\omega)_{odd}</math> numerator to a real value, since <math>P(j\omega)_{odd}</math> by itself is purely imaginary. <math>\begin{align} &\frac{dtan^{-1}(f(x))}{dx} = \frac{df(x)/dx}{1+f(x)^2} \\ &f(x) = \frac{-jP(j\omega)_{odd}}{P(j\omega)_{even}} \\ &\frac{df(x)}{dx} = \frac{P(j\omega)_{even} \frac{d(P(j\omega)_{odd})}{dx} - -jP(j\omega)_{odd} \frac{d(-jP(j\omega)_{even})}{dx}} {P(j\omega)_{even}^2} \end{align}</math> The above expressions contain four terms to calculate: <math>\begin{array}{lcl} Se = P(j\omega)_{even} &=& \sum_{k=0}^{N/2}P_{2k}(j\omega)^{2k} &=& \sum_{k=0}^{N/2}P_{2k}(-1)^{k}(\omega)^{2k}\\ So = P(j\omega)_{odd} &=& -j\sum_{k=1}^{(N+1)/2}P_{2k-1}(j\omega)^{2k-1} &=& \sum_{k=1}^{(N+1)/2}P_{2k-1}(-1)^{k-1}(\omega)^{2k-1}\\ De = \frac{d(P(j\omega)_{even})}{dx} &=& -j\sum_{k=1}^{N/2}2kP_{2k}(j\omega)^{2k-1} &=& \sum_{k=1}^{N/2}2kP_{2k}(-1)^{k-1}(\omega)^{2k-1} \\ Do = \frac{d(P(j\omega)_{odd})}{dx} &=& \sum_{k=1}^{(N+1)/2}{(2k-1)}P_{2k-1}(j\omega)^{2k-2} &=& \sum_{k=1}^{(N+1)/2}{(2k-1)}P_{2k-1}(-1)^{k-1}(\omega)^{2k-2}\\ \\ \frac{df(x)}{dx} &=& \frac{SeDo - SoDe}{Se^2} \end{array}</math> The equations above may be used to determine the group delay of polynomial <math>P(S)</math> in closed form, shown below after the equations have been reduced to a simplified form. <math>\text{Group Delay} =gd(P(j\omega))= -\frac{d\phi(\omega)}{d\omega} = -\frac {(So*De + Se*Do)} {(Se^2 + So^2)} \text{ sec}</math> === Polynomial ratio === A polynomial ratio of the form <math>P2(S) = P_{num}(S)/P_{den}(S)</math>, such as that typically found in the definition of [[filter design]]s, may have the group delay determined by taking advantage of the phase relation, <math>\phi(P1/P2) = \phi(P1) - \phi(P2)</math>. <math>\text{Group Delay} = gd(P2) = gd(P2_{num}) - gd(P2_{den}) sec</math> === Simple filter example === A four pole Legendre filter transfer function used in the [[Optimum "L" filter#Example: 4th order transfer function|Legendre filter example]] is shown below. <math>T_4(j\omega) = \frac{1}{2.4494897(j\omega)^4 + 3.8282201(j\omega)^3 + 4.6244874(j\omega)^2 + 3.0412127(j\omega) + 1}</math> The numerator group delay by inspection is zero, so only the denominator group delay need be determined. <math>\begin{align} &Pe_{den} = 2.4494897\omega^4 - 4.6244874\omega^2 + 1 \\ &Po_{den} = -3.8282201\omega^3 + 3.0412127\omega \\ &De_{den} = 4(2.4494897)\omega^3 - 2(4.6244874)\omega \\ &Do_{den} = 3(-3.8282201)\omega^2 + 3.0412127 \end{align}</math> Evaluating at <math>\omega</math> = 1 rad/sec: <math>\begin{align} &Pe_{den} = -1.1749977 \\ &Po_{den} = -0.7870074 \\ &De_{den} = -0.548984 \\ &Do_{den} = -8.4434476 \end{align}</math> <math>\begin{align} &\text{Group Delay} =gd(T_4(j\omega))= -\frac{d\phi(\omega)}{d\omega} \\ &= \bigg[0--\frac {((-0.7870074*-0.548984) + (-1.1749977*-8.4434476))} {((-1.1749977)^2 + (-0.7870074)^2)}\bigg] \\ &= 5.1765430\text{ sec} \\ &\text{at }\omega = 1\text{ rad/sec} \end{align}</math> The group delay calculation procedure and results may be confirmed to be correct by comparing them to the results derived from the digital [[derivative]] of the phase angle, <math>\phi(\omega)</math>, using a small delta <math>\Delta\omega</math> of +/-1.e-04 rad/sec. <math>\begin{align} &\text{Group Delay} =gd(T_4(j\omega))= -\frac{d\phi(\omega)}{d\omega} \\ &= - (\phi(1+1e-04)-\phi(1.-1e04))/2e-04\\ &= 5.1765432\text{ sec} \\ &\text{at }\omega = 1\text{ rad/sec} \end{align}</math> Since the group delay calculated by the digital derivative using a small delta is within 7 digits of accuracy when compared to the precise analytical calculation, the group delay calculation procedure and results are confirmed to be correct.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)