Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Maximal dominated linear extension=== {{Math theorem | name = Theorem{{sfn|Narici|Beckenstein|2011|pp=177-220}} | note = Andenaes, 1970 | math_statement = Let <math>p : X \to \R</math> be a sublinear function on a real vector space <math>X,</math> let <math>f : M \to \R</math> be a linear functional on a vector subspace <math>M</math> of <math>X</math> such that <math>f \leq p</math> on <math>M,</math> and let <math>S \subseteq X</math> be any subset of <math>X.</math> Then there exists a linear functional <math>F : X \to \R</math> on <math>X</math> that extends <math>f,</math> satisfies <math>F \leq p</math> on <math>X,</math> and is (pointwise) maximal on <math>S</math> in the following sense: if <math>\widehat{F} : X \to \R</math> is a linear functional on <math>X</math> that extends <math>f</math> and satisfies <math>\widehat{F} \leq p</math> on <math>X,</math> then <math>F \leq \widehat{F}</math> on <math>S</math> implies <math>F = \widehat{F}</math> on <math>S.</math> }} If <math>S = \{s\}</math> is a singleton set (where <math>s \in X</math> is some vector) and if <math>F : X \to \R</math> is such a maximal dominated linear extension of <math>f : M \to \R,</math> then <math>F(s) = \inf_{m \in M} [f(s) + p(s - m)].</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)