Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Energy variation in the spring–damping system==== In terms of energy, all systems have two types of energy: [[potential energy]] and [[kinetic energy]]. When a spring is stretched or compressed, it stores elastic potential energy, which is then transferred into kinetic energy. The potential energy within a spring is determined by the equation <math display="inline"> U = \frac{1}{2}kx^2. </math> When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By [[conservation of energy]], assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic energy of the mass is zero. When the spring is released, it tries to return to equilibrium, and all its potential energy converts to kinetic energy of the mass.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)