Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incircle and excircles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Derivation of exradii formula==== Source:<ref name="Altshiller-Court 1925 79"/> Let the excircle at side <math>AB</math> touch at side <math>AC</math> extended at <math>G</math>, and let this excircle's radius be <math>r_c</math> and its center be <math>J_c</math>. Then <math>J_c G</math> is an altitude of <math>\triangle ACJ_c</math>, so <math>\triangle ACJ_c</math> has area <math>\tfrac12 br_c</math>. By a similar argument, <math>\triangle BCJ_c</math> has area <math>\tfrac12 ar_c</math> and <math>\triangle ABJ_c</math> has area <math>\tfrac12 cr_c</math>. Thus the area <math>\Delta</math> of triangle <math>\triangle ABC</math> is :<math display=block>\Delta = \tfrac12 (a + b - c)r_c = (s - c)r_c</math>. So, by symmetry, denoting <math>r</math> as the radius of the incircle, :<math display=block>\Delta = sr = (s - a)r_a = (s - b)r_b = (s - c)r_c</math>. By the [[Law of Cosines]], we have :<math display=block>\cos A = \frac{b^2 + c^2 - a^2}{2bc}</math> Combining this with the identity <math>\sin^2 \! A + \cos^2 \! A = 1</math>, we have :<math display=block>\sin A = \frac{\sqrt{-a^4 - b^4 - c^4 + 2a^2 b^2 + 2b^2 c^2 + 2 a^2 c^2}}{2bc}</math> But <math>\Delta = \tfrac12 bc \sin A</math>, and so :<math display=block>\begin{align} \Delta &= \tfrac14 \sqrt{-a^4 - b^4 - c^4 + 2a^2b^2 + 2b^2 c^2 + 2 a^2 c^2} \\[5mu] &= \tfrac14 \sqrt{(a + b + c)(-a + b + c)(a - b + c)(a + b - c)} \\[5mu] & = \sqrt{s(s - a)(s - b)(s - c)}, \end{align}</math> which is [[Heron's formula]]. Combining this with <math>sr = \Delta</math>, we have :<math display=block>r^2 = \frac{\Delta^2}{s^2} = \frac{(s - a)(s - b)(s - c)}{s}.</math> Similarly, <math>(s - a)r_a = \Delta</math> gives :<math display=block>\begin{align} &r_a^2 = \frac{s(s - b)(s - c)}{s - a} \\[4pt] &\implies r_a = \sqrt{\frac{s(s - b)(s - c)}{s - a}}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)