Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Generalized inverses of matrices <span class="anchor" id="matrices"></span><!-- [[Generalized inverse]] links here. Please do not change. --> ==== A [[square matrix]] <math>M</math> with entries in a [[field (mathematics)|field]] <math>K</math> is invertible (in the set of all square matrices of the same size, under [[matrix multiplication]]) if and only if its [[determinant]] is different from zero. If the determinant of <math>M</math> is zero, it is impossible for it to have a one-sided inverse; therefore a left inverse or right inverse implies the existence of the other one. See [[invertible matrix]] for more. More generally, a square matrix over a [[commutative ring]] <math>R</math> is invertible [[if and only if]] its determinant is invertible in <math>R</math>. Non-square matrices of [[full rank]] have several one-sided inverses:<ref>{{cite web| url = http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/detail/lecture33.htm| title = MIT Professor Gilbert Strang Linear Algebra Lecture #33 – Left and Right Inverses; Pseudoinverse.}}</ref> * For <math>A:m\times n \mid m>n</math> we have left inverses; for example, <math>\underbrace{ \left(A^\text{T}A\right)^{-1} A^\text{T} }_{ A^{-1}_\text{left} } A = I_n</math> * For <math>A:m\times n \mid m<n</math> we have right inverses; for example, <math>A \underbrace{ A^\text{T}\left(AA^\text{T}\right)^{-1} }_{ A^{-1}_\text{right} } = I_m</math> The left inverse can be used to determine the least norm solution of <math>Ax = b</math>, which is also the [[least squares]] formula for [[regression analysis|regression]] and is given by <math>x = \left(A^\text{T}A\right)^{-1}A^\text{T}b.</math> No [[rank deficient]] matrix has any (even one-sided) inverse. However, the Moore–Penrose inverse exists for all matrices, and coincides with the left or right (or true) inverse when it exists. As an example of matrix inverses, consider: : <math>A:2 \times 3 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} </math> So, as ''m'' < ''n'', we have a right inverse, <math>A^{-1}_\text{right} = A^\text{T} \left(AA^\text{T}\right)^{-1}.</math> By components it is computed as : <math>\begin{align} AA^\text{T} &= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 14 & 32\\ 32 & 77 \end{bmatrix} \\[3pt] \left(AA^\text{T}\right)^{-1} &= \begin{bmatrix} 14 & 32\\ 32 & 77 \end{bmatrix}^{-1} = \frac{1}{54} \begin{bmatrix} 77 & -32\\ -32 & 14 \end{bmatrix} \\[3pt] A^\text{T}\left(AA^\text{T}\right)^{-1} &= \frac{1}{54} \begin{bmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{bmatrix} \begin{bmatrix} 77 & -32\\ -32 & 14 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} -17 & 8\\ -2 & 2\\ 13 & -4 \end{bmatrix} = A^{-1}_\text{right} \end{align}</math> The left inverse doesn't exist, because : <math> A^\text{T}A = \begin{bmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 17 & 22 & 27 \\ 22 & 29 & 36\\ 27 & 36 & 45 \end{bmatrix} </math> which is a [[singular matrix]], and cannot be inverted.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)