Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Identities== ===Half angle formula=== <math display="block">\operatorname{sn}\left(\frac{u}{2},m\right)=\pm\sqrt{\frac{1-\operatorname{cn}(u,m)}{1+\operatorname{dn}(u,m)}}</math> <math display="block">\operatorname{cn}\left(\frac{u}{2},m\right)=\pm\sqrt{\frac{\operatorname{cn}(u,m)+\operatorname{dn}(u,m)}{1+\operatorname{dn}(u,m)}}</math> <math display="block">\operatorname{cn}\left(\frac{u}{2},m\right)=\pm\sqrt{\frac{m'+\operatorname{dn}(u,m)+m\operatorname{cn}(u,m)}{1+\operatorname{dn}(u,m)}}</math> ===K formulas=== '''Half K formula''' <math display="block">\operatorname{sn}\left[\tfrac{1}{2}K(k); k\right] = \frac{\sqrt{2}}{\sqrt{1+k} + \sqrt{1-k}} </math> <math display="block">\operatorname{cn}\left[\tfrac{1}{2}K(k); k\right] = \frac{\sqrt{2}\,\sqrt[4]{1-k^2}}{\sqrt{1+k} + \sqrt{1-k}} </math> <math display="block"> \operatorname{dn}\left[\tfrac{1}{2}K(k); k\right] = \sqrt[4]{1-k^2} </math> '''Third K formula''' :<math>\operatorname{sn}\left[\frac{1}{3}K\left(\frac{x^3}{\sqrt{x^6+1}+1}\right);\frac{x^3}{\sqrt{x^6+1}+1}\right] = \frac{\sqrt{2\sqrt{x^4-x^2+1}-x^2+2}+\sqrt{x^2+1}-1}{\sqrt{2\sqrt{x^4-x^2+1}-x^2+2}+\sqrt{x^2+1}+1} </math> To get ''x''<sup>3</sup>, we take the tangent of twice the arctangent of the modulus. Also this equation leads to the sn-value of the third of ''K'': :<math>k^2s^4-2k^2s^3+2s-1 = 0 </math> :<math>s = \operatorname{sn}\left[\tfrac{1}{3}K(k); k\right] </math> These equations lead to the other values of the Jacobi-Functions: :<math>\operatorname{cn}\left[\tfrac{2}{3}K(k); k\right] = 1 - \operatorname{sn}\left[\tfrac{1}{3}K(k); k\right] </math> :<math>\operatorname{dn}\left[\tfrac{2}{3}K(k); k\right] = 1/\operatorname{sn}\left[\tfrac{1}{3}K(k); k\right] - 1 </math> '''Fifth K formula''' Following equation has following solution: :<math>4k^2x^6+8k^2x^5+2(1-k^2)^2x-(1-k^2)^2 = 0 </math> :<math>x = \frac{1}{2}-\frac{1}{2}k^2\operatorname{sn}\left[\tfrac{2}{5}K(k); k\right]^2 \operatorname{sn}\left[\tfrac{4}{5}K(k); k\right]^2 = \frac{\operatorname{sn}\left[\frac{4}{5}K(k); k\right]^2-\operatorname{sn}\left[\frac{2}{5}K(k); k\right]^2}{2\operatorname{sn}\left[\frac{2}{5}K(k); k\right]\operatorname{sn}\left[\frac{4}{5}K(k); k\right]} </math> To get the sn-values, we put the solution x into following expressions: :<math>\operatorname{sn}\left[\tfrac{2}{5}K(k); k\right] = (1 + k^2)^{-1/2}\sqrt{2(1-x-x^2)(x^2+1-x\sqrt{x^2+1})} </math> :<math>\operatorname{sn}\left[\tfrac{4}{5}K(k); k\right] = (1 + k^2)^{-1/2}\sqrt{2(1-x-x^2)(x^2+1+x\sqrt{x^2+1})} </math> === Relations between squares of the functions === Relations between squares of the functions can be derived from two basic relationships (Arguments (''u'',''m'') suppressed): <math display="block">\operatorname{cn}^2+\operatorname{sn}^2=1</math> <math display="block">\operatorname{cn}^2+m' \operatorname{sn}^2=\operatorname{dn}^2</math> where ''m + m' ''= 1. Multiplying by any function of the form ''nq'' yields more general equations: <math display="block">\operatorname{cq}^2+\operatorname{sq}^2=\operatorname{nq}^2</math> <math display="block">\operatorname{cq}^2{}+m' \operatorname{sq}^2=\operatorname{dq}^2</math> With ''q'' = ''d'', these correspond trigonometrically to the equations for the unit circle (<math>x^2+y^2=r^2</math>) and the unit ellipse (<math>x^2{}+m' y^2=1</math>), with ''x'' = ''cd'', ''y'' = ''sd'' and ''r'' = ''nd''. Using the multiplication rule, other relationships may be derived. For example: <math display="block"> -\operatorname{dn}^2{}+m'= -m\operatorname{cn}^2 = m\operatorname{sn}^2-m </math> <math display="block"> -m'\operatorname{nd}^2{}+m'= -mm'\operatorname{sd}^2 = m\operatorname{cd}^2-m </math> <math display="block"> m'\operatorname{sc}^2{}+m'= m'\operatorname{nc}^2 = \operatorname{dc}^2-m </math> <math display="block"> \operatorname{cs}^2{}+m'=\operatorname{ds}^2=\operatorname{ns}^2-m </math> === Addition theorems === The functions satisfy the two square relations (dependence on ''m'' suppressed) <math display="block">\operatorname{cn}^2(u) + \operatorname{sn}^2(u) = 1,\,</math> <math display="block">\operatorname{dn}^2(u) + m \operatorname{sn}^2(u) = 1.\,</math> From this we see that (cn, sn, dn) parametrizes an [[elliptic curve]] which is the intersection of the two [[quadric]]s defined by the above two equations. We now may define a group law for points on this curve by the addition formulas for the Jacobi functions<ref name="DLMF22" /> <math display="block"> \begin{align} \operatorname{cn}(x+y) & = {\operatorname{cn}(x) \operatorname{cn}(y) - \operatorname{sn}(x) \operatorname{sn}(y) \operatorname{dn}(x) \operatorname{dn}(y) \over {1 - m \operatorname{sn}^2 (x) \operatorname{sn}^2 (y)}}, \\[8pt] \operatorname{sn}(x+y) & = {\operatorname{sn}(x) \operatorname{cn}(y) \operatorname{dn}(y) + \operatorname{sn}(y) \operatorname{cn}(x) \operatorname{dn}(x) \over {1 - m \operatorname{sn}^2 (x) \operatorname{sn}^2 (y)}}, \\[8pt] \operatorname{dn}(x+y) & = {\operatorname{dn}(x) \operatorname{dn}(y) - m \operatorname{sn}(x) \operatorname{sn}(y) \operatorname{cn}(x) \operatorname{cn}(y) \over {1 - m \operatorname{sn}^2 (x) \operatorname{sn}^2 (y)}}. \end{align} </math> The Jacobi epsilon and zn functions satisfy a quasi-addition theorem: <math display="block">\begin{align}\mathcal{E}(x+y,m)&=\mathcal{E}(x,m)+\mathcal{E}(y,m)-m\operatorname{sn}(x,m)\operatorname{sn}(y,m)\operatorname{sn}(x+y,m),\\ \operatorname{zn}(x+y,m)&=\operatorname{zn}(x,m)+\operatorname{zn}(y,m)-m\operatorname{sn}(x,m)\operatorname{sn}(y,m)\operatorname{sn}(x+y,m).\end{align}</math> Double angle formulae can be easily derived from the above equations by setting ''x'' = ''y''.<ref name="DLMF22" /> Half angle formulae<ref name="WolframJE" /><ref name="DLMF22" /> are all of the form: <math display="block">\operatorname{pq}(\tfrac{1}{2}u,m)^2 = f_{\mathrm p}/f_{\mathrm q}</math> where: <math display="block">f_{\mathrm c} = \operatorname{cn}(u,m)+\operatorname{dn}(u,m)</math> <math display="block">f_{\mathrm s} = 1-\operatorname{cn}(u,m)</math> <math display="block">f_{\mathrm n} = 1+\operatorname{dn}(u,m)</math> <math display="block">f_{\mathrm d} = (1+\operatorname{dn}(u,m))-m(1-\operatorname{cn}(u,m))</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)