Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lie algebra representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Induced representation == Let <math>\mathfrak{g}</math> be a finite-dimensional Lie algebra over a field of characteristic zero and <math>\mathfrak{h} \subset \mathfrak{g}</math> a subalgebra. <math>U(\mathfrak{h})</math> acts on <math>U(\mathfrak{g})</math> from the right and thus, for any <math>\mathfrak{h}</math>-module ''W'', one can form the left <math>U(\mathfrak{g})</math>-module <math>U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} W</math>. It is a <math>\mathfrak{g}</math>-module denoted by <math>\operatorname{Ind}_\mathfrak{h}^\mathfrak{g} W</math> and called the <math>\mathfrak{g}</math>-module induced by ''W''. It satisfies (and is in fact characterized by) the universal property: for any <math>\mathfrak{g}</math>-module ''E'' :<math>\operatorname{Hom}_\mathfrak{g}(\operatorname{Ind}_\mathfrak{h}^\mathfrak{g} W, E) \simeq \operatorname{Hom}_\mathfrak{h}(W, \operatorname{Res}^\mathfrak{g}_\mathfrak{h} E)</math>. Furthermore, <math>\operatorname{Ind}_\mathfrak{h}^\mathfrak{g}</math> is an exact functor from the category of <math>\mathfrak{h}</math>-modules to the category of <math>\mathfrak{g}</math>-modules. These uses the fact that <math>U(\mathfrak{g})</math> is a free right module over <math>U(\mathfrak{h})</math>. In particular, if <math>\operatorname{Ind}_\mathfrak{h}^\mathfrak{g} W</math> is simple (resp. absolutely simple), then ''W'' is simple (resp. absolutely simple). Here, a <math>\mathfrak{g}</math>-module ''V'' is absolutely simple if <math>V \otimes_k F</math> is simple for any field extension <math>F/k</math>. The induction is transitive: <math>\operatorname{Ind}_\mathfrak{h}^\mathfrak{g} \simeq \operatorname{Ind}_\mathfrak{h'}^\mathfrak{g} \circ \operatorname{Ind}_\mathfrak{h}^\mathfrak{h'}</math> for any Lie subalgebra <math>\mathfrak{h'} \subset \mathfrak{g}</math> and any Lie subalgebra <math>\mathfrak{h} \subset \mathfrak{h}'</math>. The induction commutes with restriction: let <math>\mathfrak{h} \subset \mathfrak{g}</math> be subalgebra and <math>\mathfrak{n}</math> an ideal of <math>\mathfrak{g}</math> that is contained in <math>\mathfrak{h}</math>. Set <math>\mathfrak{g}_1 = \mathfrak{g}/\mathfrak{n}</math> and <math>\mathfrak{h}_1 = \mathfrak{h}/\mathfrak{n}</math>. Then <math>\operatorname{Ind}^\mathfrak{g}_\mathfrak{h} \circ \operatorname{Res}_\mathfrak{h} \simeq \operatorname{Res}_\mathfrak{g} \circ \operatorname{Ind}^\mathfrak{g_1}_\mathfrak{h_1}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)