Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Functions of more than one variable== ===Ordinary limits=== By noting that {{math|{{abs|''x'' − ''p''}}}} represents a [[distance]], the definition of a limit can be extended to functions of more than one variable. In the case of a function <math>f : S \times T \to \R</math> defined on <math>S \times T \subseteq \R^2,</math> we defined the limit as follows: '''the limit of {{mvar|f}} as {{math|(''x'', ''y'')}} approaches {{math|(''p'', ''q'')}} is {{mvar|L}}''', written <math display=block> \lim_{(x,y) \to (p, q)} f(x, y) = L </math> if the following condition holds: :For every {{math|''ε'' > 0}}, there exists a {{math|''δ'' > 0}} such that for all {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, whenever <math display=inline>0 < \sqrt{(x-p)^2 + (y-q)^2} < \delta,</math> we have {{math|{{abs|''f''(''x'', ''y'') − ''L''}} < ''ε''}},<ref>{{citation | last = Stewart | first = James |author-link = James Stewart (mathematician) | chapter = Chapter 14.2 Limits and Continuity | pages = 952 | title = Multivariable Calculus | year = 2020 | publisher = Cengage Learning | edition = 9th | isbn = 9780357042922}}</ref> or formally: <math display=block>(\forall \varepsilon > 0)\, (\exists \delta > 0)\, (\forall x \in S) \, (\forall y \in T)\, (0 < \sqrt{(x-p)^2 + (y-q)^2} < \delta \implies |f(x, y) - L| < \varepsilon)).</math> Here <math display=inline>\sqrt{(x-p)^2 + (y-q)^2}</math> is the [[Euclidean distance]] between {{math|(''x'', ''y'')}} and {{math|(''p'', ''q'')}}. (This can in fact be replaced by any [[Norm (mathematics)|norm]] {{math|{{abs|{{abs|(''x'', ''y'') − (''p'', ''q'')}}}}}}, and be extended to any number of variables.) For example, we may say <math display=block> \lim_{(x,y) \to (0, 0)} \frac{x^4}{x^2+y^2} = 0 </math> because for every {{math|''ε'' > 0}}, we can take <math display=inline>\delta = \sqrt \varepsilon</math> such that for all real {{math|''x'' ≠ 0}} and real {{math|''y'' ≠ 0}}, if <math display=inline>0 < \sqrt{(x-0)^2 + (y-0)^2} < \delta,</math> then {{math|{{abs|''f''(''x'', ''y'') − 0}} < ''ε''}}. Similar to the case in single variable, the value of {{mvar|f}} at {{math|(''p'', ''q'')}} does not matter in this definition of limit. For such a multivariable limit to exist, this definition requires the value of {{mvar|f}} approaches {{mvar|L}} along every possible path approaching {{math|(''p'', ''q'')}}.{{sfnp|Stewart|2020|p=953}} In the above example, the function <math display=block>f(x, y) = \frac{x^4}{x^2+y^2}</math> satisfies this condition. This can be seen by considering the [[polar coordinates]] <math display=block>(x,y) = (r\cos\theta, r\sin\theta) \to (0, 0),</math> which gives <math display=block>\lim_{r \to 0} f(r \cos \theta, r \sin \theta) = \lim_{r \to 0} \frac{r^4 \cos^4 \theta}{r^2} = \lim_{r \to 0} r^2 \cos^4 \theta.</math> Here {{math|1=''θ'' = ''θ''(''r'')}} is a function of ''r'' which controls the shape of the path along which {{mvar|f}} is approaching {{math|(''p'', ''q'')}}. Since {{math|cos ''θ''}} is bounded between [−1, 1], by the [[sandwich theorem]], this limit tends to 0. In contrast, the function <math display=block>f(x, y) = \frac{xy}{x^2 + y^2}</math> does not have a limit at {{math|(0, 0)}}. Taking the path {{math|1=(''x'', ''y'') = (''t'', 0) → (0, 0)}}, we obtain <math display=block>\lim_{t \to 0} f(t, 0) = \lim_{t \to 0} \frac{0}{t^2} = 0,</math> while taking the path {{math|1=(''x'', ''y'') = (''t'', ''t'') → (0, 0)}}, we obtain <math display=block>\lim_{t \to 0} f(t, t) = \lim_{t \to 0} \frac{t^2}{t^2 + t^2} = \frac{1}{2}.</math> Since the two values do not agree, {{mvar|f}} does not tend to a single value as {{math|(''x'', ''y'')}} approaches {{math|(0, 0)}}. ===Multiple limits=== Although less commonly used, there is another type of limit for a multivariable function, known as the '''multiple limit'''. For a two-variable function, this is the '''double limit'''.<ref name="Zakon_219">{{citation | last = Zakon |first = Elias | chapter = Chapter 4. Function Limits and Continuity | pages = 219–220 | title = Mathematical Anaylysis, Volume I | year = 2011 |publisher = University of Windsor | isbn = 9781617386473}}</ref> Let <math>f : S \times T \to \R</math> be defined on <math>S \times T \subseteq \R^2,</math> we say '''the double limit of {{mvar|f}} as {{mvar|x}} approaches {{mvar|p}} and {{mvar|y}} approaches {{mvar|q}} is {{mvar|L}}''', written <math display=block> \lim_{ {x \to p} \atop {y \to q} } f(x, y) = L </math> if the following condition holds: {{block indent| For every {{math|''ε'' > 0}}, there exists a {{math|''δ'' > 0}} such that for all {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, whenever {{math|0 < {{abs|''x'' − ''p''}} < ''δ''}} and {{math|0 < {{abs|''y'' − ''q''}} < ''δ''}}, we have {{math|{{abs|''f''(''x'', ''y'') − ''L''}} < ''ε''}}.<ref name="Zakon_219" />}} <math display=block>(\forall \varepsilon > 0)\, (\exists \delta > 0)\, (\forall x \in S) \, (\forall y \in T)\, ( (0 < |x-p| < \delta) \land (0 < |y-q| < \delta) \implies |f(x, y) - L| < \varepsilon) .</math> For such a double limit to exist, this definition requires the value of {{mvar|f}} approaches {{mvar|L}} along every possible path approaching {{math|(''p'', ''q'')}}, excluding the two lines {{math|1=''x'' = ''p''}} and {{math|1=''y'' = ''q''}}. As a result, the multiple limit is a weaker notion than the ordinary limit: if the ordinary limit exists and equals {{mvar|L}}, then the multiple limit exists and also equals {{mvar|L}}. The converse is not true: the existence of the multiple limits does not imply the existence of the ordinary limit. Consider the example <math display=block>f(x,y) = \begin{cases} 1 \quad \text{for} \quad xy \ne 0 \\ 0 \quad \text{for} \quad xy = 0 \end{cases}</math> where <math display=block> \lim_{ {x \to 0} \atop {y \to 0} } f(x, y) = 1 </math> but <math display=block>\lim_{(x, y) \to (0, 0)} f(x, y)</math> does not exist. If the domain of {{mvar|f}} is restricted to <math>(S\setminus\{p\}) \times (T\setminus\{q\}),</math> then the two definitions of limits coincide.<ref name="Zakon_219" /> ===Multiple limits at infinity=== The concept of multiple limit can extend to the limit at infinity, in a way similar to that of a single variable function. For <math>f : S \times T \to \R,</math> we say '''the double limit of {{mvar|f}} as {{mvar|x}} and {{mvar|y}} approaches infinity is {{mvar|L}}''', written <math display=block> \lim_{ {x \to \infty} \atop {y \to \infty} } f(x, y) = L </math> if the following condition holds: {{block indent| For every {{math|''ε'' > 0}}, there exists a {{math|''c'' > 0}} such that for all {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, whenever {{math|''x'' > ''c''}} and {{math|''y'' > ''c''}}, we have {{math|{{abs|''f''(''x'', ''y'') − ''L''}} < ''ε''}}.}} <math display=block>(\forall \varepsilon > 0)\, (\exists c> 0)\, (\forall x \in S) \, (\forall y \in T)\, ( (x > c) \land (y > c) \implies |f(x, y) - L| < \varepsilon) .</math> We say '''the double limit of {{mvar|f}} as {{mvar|x}} and {{mvar|y}} approaches minus infinity is {{mvar|L}}''', written <math display=block> \lim_{ {x \to -\infty} \atop {y \to -\infty} } f(x, y) = L </math> if the following condition holds: {{block indent| For every {{math|''ε'' > 0}}, there exists a {{math|''c'' > 0}} such that {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, whenever {{math|''x'' < −''c''}} and {{math|''y'' < −''c''}}, we have {{math|{{abs|''f''(''x'', ''y'') − ''L''}} < ''ε''}}.}} <math display=block>(\forall \varepsilon > 0)\, (\exists c> 0)\, (\forall x \in S) \, (\forall y \in T)\, ( (x < -c) \land (y < -c) \implies |f(x, y) - L| < \varepsilon) .</math> ===Pointwise limits and uniform limits=== {{Main|Pointwise convergence|Uniform convergence}} Let <math>f : S \times T \to \R.</math> Instead of taking limit as {{math|(''x'', ''y'') → (''p'', ''q'')}}, we may consider taking the limit of just one variable, say, {{math|''x'' → ''p''}}, to obtain a single-variable function of {{mvar|y}}, namely <math>g : T \to \R.</math> In fact, this limiting process can be done in two distinct ways. The first one is called '''pointwise limit'''. We say '''the pointwise limit of {{mvar|f}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|g}}''', denoted <math display=block>\lim_{x\to p}f(x, y) = g(y),</math> or <math display=block>\lim_{x \to p}f(x, y) = g(y) \;\; \text{pointwise}.</math> Alternatively, we may say '''{{mvar|f}} tends to {{mvar|g}} pointwise as {{mvar|x}} approaches {{mvar|p}}''', denoted <math display=block>f(x, y) \to g(y) \;\; \text{as} \;\; x \to p,</math> or <math display=block>f(x, y) \to g(y) \;\; \text{pointwise} \;\; \text{as} \;\; x \to p.</math> This limit exists if the following holds: {{block indent| For every {{math|''ε'' > 0}} and every fixed {{mvar|y}} in {{mvar|T}}, there exists a {{math|''δ''(''ε'', ''y'') > 0}} such that for all {{mvar|x}} in {{mvar|S}}, whenever {{math|0 < {{abs|''x'' − ''p''}} < ''δ''}}, we have {{math|{{abs|''f''(''x'', ''y'') − ''g''(''y'')}} < ''ε''}}.{{sfnp|Zakon|2011|p=220}}}} <math display=block>(\forall \varepsilon > 0)\, (\forall y \in T) \, (\exists \delta> 0)\, (\forall x \in S)\, ( 0 < |x-p| < \delta \implies |f(x, y) - g(y)| < \varepsilon) .</math> Here, {{math|1=''δ'' = ''δ''(''ε'', ''y'')}} is a function of both {{mvar|ε}} and {{mvar|y}}. Each {{mvar|δ}} is chosen for a ''specific point'' of {{mvar|y}}. Hence we say the limit is pointwise in {{mvar|y}}. For example, <math display=block>f(x, y) = \frac{x}{\cos y}</math> has a pointwise limit of constant zero function <math display=block>\lim_{x \to 0}f(x, y) = 0(y) \;\; \text{pointwise}</math> because for every fixed {{mvar|y}}, the limit is clearly 0. This argument fails if {{mvar|y}} is not fixed: if {{mvar|y}} is very close to {{math|''π''/2}}, the value of the fraction may deviate from 0. This leads to another definition of limit, namely the '''uniform limit'''. We say '''the uniform limit of {{mvar|f}} on {{mvar|T}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|g}}''', denoted <math display=block>\underset{ {x \to p} \atop {y \in T} }{\mathrm{unif} \lim \;} f(x, y) = g(y),</math> or <math display=block>\lim_{x \to p}f(x, y) = g(y) \;\; \text{uniformly on} \; T.</math> Alternatively, we may say '''{{mvar|f}} tends to {{mvar|g}} uniformly on {{mvar|T}} as {{mvar|x}} approaches {{mvar|p}}''', denoted <math display=block>f(x, y) \rightrightarrows g(y) \; \text{on} \; T \;\; \text{as} \;\; x \to p,</math> or <math display=block>f(x, y) \to g(y) \;\; \text{uniformly on}\; T \;\; \text{as} \;\; x \to p.</math> This limit exists if the following holds: {{block indent| For every {{math|''ε'' > 0}}, there exists a {{math|''δ''(''ε'') > 0}} such that for all {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, whenever {{math|0 < {{abs|''x'' − ''p''}} < ''δ''}}, we have {{math|{{abs|''f''(''x'', ''y'') − ''g''(''y'')}} < ''ε''}}.{{sfnp|Zakon|2011|p=220}}}} <math display=block>(\forall \varepsilon > 0) \, (\exists \delta > 0)\, (\forall x \in S)\, (\forall y \in T)\, ( 0 < |x-p| < \delta \implies |f(x, y) - g(y)| < \varepsilon) .</math> Here, {{math|1=''δ'' = ''δ''(''ε'')}} is a function of only {{mvar|ε}} but not {{mvar|y}}. In other words, ''δ'' is ''uniformly applicable'' to all {{mvar|y}} in {{mvar|T}}. Hence we say the limit is uniform in {{mvar|y}}. For example, <math display=block>f(x, y) = x \cos y</math> has a uniform limit of constant zero function <math display=block>\lim_{x \to 0}f(x, y) = 0(y) \;\; \text{ uniformly on}\; \R</math> because for all real {{mvar|y}}, {{math|cos ''y''}} is bounded between {{math|[−1, 1]}}. Hence no matter how {{mvar|y}} behaves, we may use the [[sandwich theorem]] to show that the limit is 0. ===Iterated limits=== {{Main|Iterated limits}} Let <math>f : S \times T \to \R.</math> We may consider taking the limit of just one variable, say, {{math|''x'' → ''p''}}, to obtain a single-variable function of {{mvar|y}}, namely <math>g : T \to \R,</math> and then take limit in the other variable, namely {{math|''y'' → ''q''}}, to get a number {{mvar|L}}. Symbolically, <math display=block>\lim_{y \to q} \lim_{x \to p} f(x, y) = \lim_{y \to q} g(y) = L.</math> This limit is known as '''iterated limit''' of the multivariable function.{{sfnp|Zakon|2011|p=223}} The order of taking limits may affect the result, i.e., <math display=block>\lim_{y \to q} \lim_{x \to p} f(x,y) \ne \lim_{x \to p} \lim_{y \to q} f(x, y)</math> in general. A sufficient condition of equality is given by the [[Moore-Osgood theorem]], which requires the limit <math>\lim_{x \to p}f(x, y) = g(y)</math> to be uniform on {{mvar|T}}.<ref>{{citation | last1 = Taylor | first1 = Angus E. | title = General Theory of Functions and Integration | year = 2012 | publisher = Dover Books on Mathematics Series | isbn = 9780486152141 | pages = 139–140}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)