Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear elasticity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Anisotropic homogeneous media == {{Main|Hooke's law}} For anisotropic media, the stiffness tensor <math> C_{ijkl}</math> is more complicated. The symmetry of the stress tensor <math>\sigma_{ij}</math> means that there are at most 6 different elements of stress. Similarly, there are at most 6 different elements of the strain tensor <math>\varepsilon_{ij}\,\!</math>. Hence the fourth-order stiffness tensor <math> C_{ijkl}</math> may be written as a matrix <math>C_{\alpha \beta}</math> (a tensor of second order). [[Voigt notation]] is the standard mapping for tensor indices, <math display="block"> \begin{matrix} ij & =\\ \Downarrow & \\ \alpha & = \end{matrix} \begin{matrix} 11 & 22 & 33 & 23,32 & 13,31 & 12,21 \\ \Downarrow & \Downarrow & \Downarrow & \Downarrow & \Downarrow & \Downarrow & \\ 1 &2 & 3 & 4 & 5 & 6 \end{matrix}</math> With this notation, one can write the elasticity matrix for any linearly elastic medium as: <math display="block"> C_{ijkl} \Rightarrow C_{\alpha \beta} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix}.</math> As shown, the matrix <math> C_{\alpha \beta}</math> is symmetric, this is a result of the existence of a strain energy density function which satisfies <math>\sigma_{ij} = \frac{\partial W}{\partial\varepsilon_{ij}}</math>. Hence, there are at most 21 different elements of <math> C_{\alpha \beta}\,\!</math>. The isotropic special case has 2 independent elements: <math display="block"> C_{\alpha \beta} = \begin{bmatrix} K+4 \mu\ /3 & K-2 \mu\ /3 & K-2 \mu\ /3 & 0 & 0 & 0 \\ K-2 \mu\ /3 & K+4 \mu\ /3 & K-2 \mu\ /3 & 0 & 0 & 0 \\ K-2 \mu\ /3 & K-2 \mu\ /3 & K+4 \mu\ /3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu\ & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu\ & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu\ \end{bmatrix}.</math> The simplest anisotropic case, that of cubic symmetry has 3 independent elements: <math display="block"> C_{\alpha \beta} = \begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{bmatrix}.</math> The case of [[transverse isotropy]], also called polar anisotropy, (with a single axis (the 3-axis) of symmetry) has 5 independent elements: <math display="block"> C_{\alpha \beta} = \begin{bmatrix} C_{11} & C_{11}-2C_{66} & C_{13} & 0 & 0 & 0 \\ C_{11}-2C_{66} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}.</math> When the transverse isotropy is weak (i.e. close to isotropy), an alternative parametrization utilizing [[Thomsen parameters]], is convenient for the formulas for wave speeds. The case of orthotropy (the symmetry of a brick) has 9 independent elements: <math display="block"> C_{\alpha \beta} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}.</math> === Elastodynamics === The elastodynamic wave equation for anisotropic media can be expressed as <math display="block"> (\delta_{kl} \partial_{tt} - A_{kl}[\nabla])\, u_l = \frac{1}{\rho} F_k</math> where <math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math> is the ''acoustic differential operator'', and <math> \delta_{kl}</math> is [[Kronecker delta]]. ==== Plane waves and Christoffel equation ==== A ''plane wave'' has the form <math display="block"> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}}</math> with <math>\hat{\mathbf{u}}\,\!</math> of unit length. It is a solution of the wave equation with zero forcing, if and only if <math> \omega^2 </math> and <math>\hat{\mathbf{u}}</math> constitute an eigenvalue/eigenvector pair of the ''acoustic algebraic operator'' <math display="block"> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j.</math> This ''propagation condition'' (also known as the '''Christoffel equation''') may be written as <math display="block">A[\hat{\mathbf{k}}] \, \hat{\mathbf{u}} = c^2 \, \hat{\mathbf{u}}</math> where <math>\hat{\mathbf{k}} = \mathbf{k} / \sqrt{\mathbf{k}\cdot\mathbf{k}}</math> denotes propagation direction and <math>c = \omega / \sqrt{\mathbf{k} \cdot \mathbf{k}}</math> is phase velocity.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)