Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Criss-cross algorithm ==== Like the simplex algorithm of Dantzig, the [[criss-cross algorithm]] is a basis-exchange algorithm that pivots between bases. However, the criss-cross algorithm need not maintain feasibility, but can pivot rather from a feasible basis to an infeasible basis. The criss-cross algorithm does not have [[time complexity|polynomial time-complexity]] for linear programming. Both algorithms visit all 2<sup>''D''</sup> corners of a (perturbed) [[unit cube|cube]] in dimension ''D'', the [[Klee–Minty cube]], in the [[worst-case complexity|worst case]].<ref name="FukudaTerlaky">{{cite journal|first1=Komei|last1=Fukuda|author1-link=Komei Fukuda|first2=Tamás|last2=Terlaky|author2-link=Tamás Terlaky|title=Criss-cross methods: A fresh view on pivot algorithms |journal=Mathematical Programming, Series B|volume=79|number=1–3|pages=369–395|editor=Thomas M. Liebling |editor2=Dominique de Werra|year=1997|doi=10.1007/BF02614325|mr=1464775|citeseerx=10.1.1.36.9373|s2cid=2794181}}</ref><ref name="Roos">{{cite journal|last=Roos|first=C.|title=An exponential example for Terlaky's pivoting rule for the criss-cross simplex method|journal=Mathematical Programming|volume=46|year=1990|series=Series A|doi=10.1007/BF01585729|mr=1045573 |issue=1|pages=79–84|s2cid=33463483}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)