Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linus Pauling
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Death and legacy=== Pauling died of [[prostate cancer]] on August 19, 1994, at 19:20 at home in [[Big Sur]], California.<ref name="Offit" /> He was 93 years old.<ref>Goertzel and Goertzel, p. 247.</ref> A grave marker for Pauling was placed in Oswego Pioneer Cemetery in [[Lake Oswego, Oregon|Lake Oswego]], Oregon by his sister Pauline, but Pauling's ashes, along with those of his wife, were not buried there until 2005.<ref name="grave">{{Cite web |title=The Centennial: Who's Buried in Linus Pauling's Grave? |url=http://www.ci.oswego.or.us/sites/default/files/fileattachments/publicaffairs/webpage/13678/centennial_july2010.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.ci.oswego.or.us/sites/default/files/fileattachments/publicaffairs/webpage/13678/centennial_july2010.pdf |archive-date=October 9, 2022 |url-status=live |access-date=December 26, 2012}}</ref> Pauling's discoveries led to decisive contributions in a diverse array of areas including around 350 publications in the fields of quantum mechanics, inorganic chemistry, organic chemistry, protein structure, molecular biology, and medicine.<ref name="California">{{Cite web |title=Linus Pauling |url=http://www.californiamuseum.org/inductee/linus-pauling |access-date=June 1, 2015 |website=California Museum|date=February 17, 2012 }}</ref><ref>{{Cite web |title=Linus Pauling β Biographical |url=https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1954/pauling-bio.html |access-date=October 6, 2016 |website=Nobelprize.org |publisher=Nobel Media AB 2014}}</ref> His work on chemical bonding marks him as one of the founders of modern [[quantum chemistry]].<ref name="natureobit" /> ''The Nature of the Chemical Bond'' was the standard work for many years,<ref name="Hamilton">{{Cite book |last=Hamilton |first=Neil A. |url=https://books.google.com/books?id=tKxOpAh78IsC&pg=PA303 |title=American social leaders and activists |date=2002 |publisher=Facts On File |isbn=978-0-8160-4535-8 |location=New York |access-date=June 1, 2015}}</ref> and concepts like [[Orbital hybridisation|hybridization]] and [[electronegativity]] remain part of standard chemistry textbooks. While his [[valence bond]] approach fell short of accounting quantitatively for some of the characteristics of molecules, such as the color of [[organometallic]] complexes, and would later be eclipsed by the [[molecular orbital theory]] of [[Robert Mulliken]], valence bond theory still competes, in its modern form, with molecular orbital theory and [[density functional theory]] (DFT) as a way of describing chemical phenomena.<ref>{{Cite journal |last1=Hoffmann |first1=Roald |last2=Shaik |first2=Sason |last3=Hiberty |first3=Philippe C. |year=2003 |title=A Conversation on VB vs MO Theory: A Never-Ending Rivalry? |journal=[[Accounts of Chemical Research|Acc Chem Res]] |volume=36 |issue=10 |pages=750β6 |doi=10.1021/ar030162a |pmid=14567708}}</ref> Pauling's work on crystal structure contributed significantly to the prediction and elucidation of the structures of complex minerals and compounds.<ref name=Marinacci/>{{rp|80β81}} His discovery of the alpha helix and beta sheet is a fundamental foundation for the study of protein structure.<ref name="Goertzel and Goertzel, p. 95-100" /> [[Francis Crick]] acknowledged Pauling as the "father of [[molecular biology]]".<ref name="natureobit" /><ref>{{Cite news |date=March 1, 1986 |title=Pauling Honored by Scientists at Caltech Event |work=Los Angeles Times |agency=United Press International |url=https://www.latimes.com/archives/la-xpm-1986-03-01-me-13101-story.html |access-date=July 22, 2012}}</ref> His discovery of [[sickle cell anemia]] as a "molecular disease" opened the way toward examining genetically acquired mutations at a molecular level.<ref name=Strasser/> Pauling's 1951 publication with Robert B. Corey and H. R. Branson, "The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain," was a key early finding in the then newly emerging field of molecular biology. This publication was honored by a Citation for Chemical Breakthrough Award from the Division of History of Chemistry of the American Chemical Society presented to the department of chemistry, Caltech, in 2017.<ref name="breakthrough">{{Cite web |title=Citations for Chemical Breakthrough Awards 2017 Awardees |url=http://www.scs.illinois.edu/~mainzv/HIST/awards/CCB-2017_Awardees.php |access-date=March 12, 2018 |website=Division of the History of Chemistry}}</ref><ref name="configurations">{{Cite journal |last1=Pauling |first1=L. |last2=Corey |first2=R. B. |last3=Branson |first3=H. R. |author3-link=Herman Branson |year=1951 |title=The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain |journal=Proceedings of the National Academy of Sciences |volume=37 |issue=4 |pages=205β11 |bibcode=1951PNAS...37..205P |doi=10.1073/pnas.37.4.205 |pmc=1063337 |pmid=14816373 |doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)