Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Markov chain
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Convergence speed to the stationary distribution==== As stated earlier, from the equation <math>\boldsymbol{\pi} = \boldsymbol{\pi} \mathbf{P},</math> (if exists) the stationary (or steady state) distribution '''{{pi}}''' is a left eigenvector of row [[stochastic matrix]] '''P'''. Then assuming that '''P''' is diagonalizable or equivalently that '''P''' has ''n'' linearly independent eigenvectors, speed of convergence is elaborated as follows. (For non-diagonalizable, that is, [[defective matrix|defective matrices]], one may start with the [[Jordan normal form]] of '''P''' and proceed with a bit more involved set of arguments in a similar way.<ref>{{cite journal |last1=Schmitt |first1=Florian |last2=Rothlauf |first2=Franz |title=On the Importance of the Second Largest Eigenvalue on the Convergence Rate of Genetic Algorithms |journal=Proceedings of the 14th Symposium on Reliable Distributed Systems |date=2001 |citeseerx=10.1.1.28.6191 }}</ref>) Let '''U''' be the matrix of eigenvectors (each normalized to having an L2 norm equal to 1) where each column is a left eigenvector of '''P''' and let '''Σ''' be the diagonal matrix of left eigenvalues of '''P''', that is, '''Σ''' = diag(''λ''<sub>1</sub>,''λ''<sub>2</sub>,''λ''<sub>3</sub>,...,''λ''<sub>''n''</sub>). Then by [[eigendecomposition]] :<math> \mathbf{P} = \mathbf{U\Sigma U}^{-1} .</math> Let the eigenvalues be enumerated such that: :<math> 1 = |\lambda_1 |> |\lambda_2 | \geq |\lambda_3 | \geq \cdots \geq |\lambda_n|.</math> Since '''P''' is a row stochastic matrix, its largest left eigenvalue is 1. If there is a unique stationary distribution, then the largest eigenvalue and the corresponding eigenvector is unique too (because there is no other '''{{pi}}''' which solves the stationary distribution equation above). Let '''u'''<sub>''i''</sub> be the ''i''-th column of '''U''' matrix, that is, '''u'''<sub>''i''</sub> is the left eigenvector of '''P''' corresponding to λ<sub>''i''</sub>. Also let '''x''' be a length ''n'' row vector that represents a valid probability distribution; since the eigenvectors '''u'''<sub>''i''</sub> span <math>\R^n,</math> we can write :<math> \mathbf{x}^\mathsf{T} = \sum_{i=1}^n a_i \mathbf{u}_i, \qquad a_i \in \R.</math> If we multiply '''x''' with '''P''' from right and continue this operation with the results, in the end we get the stationary distribution '''{{pi}}'''. In other words, '''{{pi}}''' = '''a'''<sub>1</sub> '''u'''<sub>1</sub> ← '''xPP'''...'''P''' = '''xP'''<sup>''k''</sup> as ''k'' → ∞. That means :<math>\begin{align} \boldsymbol{\pi}^{(k)} &= \mathbf{x} \left (\mathbf{U\Sigma U}^{-1} \right ) \left (\mathbf{U\Sigma U}^{-1} \right )\cdots \left (\mathbf{U\Sigma U}^{-1} \right ) \\ &= \mathbf{xU\Sigma}^k \mathbf{U}^{-1} \\ &= \left (a_1\mathbf{u}_1^\mathsf{T} + a_2\mathbf{u}_2^\mathsf{T} + \cdots + a_n\mathbf{u}_n^\mathsf{T} \right )\mathbf{U\Sigma}^k\mathbf{U}^{-1} \\ &= a_1\lambda_1^k\mathbf{u}_1^\mathsf{T} + a_2\lambda_2^k\mathbf{u}_2^\mathsf{T} + \cdots + a_n\lambda_n^k\mathbf{u}_n^\mathsf{T} && u_i \bot u_j \text{ for } i\neq j \\ & = \lambda_1^k\left\{a_1\mathbf{u}_1^\mathsf{T} + a_2\left(\frac{\lambda_2}{\lambda_1}\right)^k\mathbf{u}_2^\mathsf{T} + a_3\left(\frac{\lambda_3}{\lambda_1}\right)^k\mathbf{u}_3^\mathsf{T} + \cdots + a_n\left(\frac{\lambda_n}{\lambda_1}\right)^k\mathbf{u}_n^\mathsf{T}\right\} \end{align}</math> Since '''{{pi}}''' is parallel to '''u'''<sub>1</sub>(normalized by L2 norm) and '''{{pi}}'''<sup>(''k'')</sup> is a probability vector, '''{{pi}}'''<sup>(''k'')</sup> approaches to '''a'''<sub>1</sub> '''u'''<sub>1</sub> = '''{{pi}}''' as ''k'' → ∞ with a speed in the order of ''λ''<sub>2</sub>/''λ''<sub>1</sub> exponentially. This follows because <math> |\lambda_2| \geq \cdots \geq |\lambda_n|,</math> hence ''λ''<sub>2</sub>/''λ''<sub>1</sub> is the dominant term. The smaller the ratio is, the faster the convergence is.<ref>{{Cite journal | volume = 37 | issue = 3| pages = 387–405| last = Rosenthal| first = Jeffrey S.| title = Convergence Rates for Markov Chains| journal = SIAM Review| accessdate = 2021-05-31| date = 1995| doi = 10.1137/1037083| url = https://www.jstor.org/stable/2132659| jstor = 2132659}}</ref> Random noise in the state distribution '''{{pi}}''' can also speed up this convergence to the stationary distribution.<ref>{{cite journal|last=Franzke|first=Brandon|author2=Kosko, Bart|date=1 October 2011|title=Noise can speed convergence in Markov chains|journal=Physical Review E|volume=84|issue=4|pages=041112|bibcode=2011PhRvE..84d1112F|doi=10.1103/PhysRevE.84.041112|pmid=22181092}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)