Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Equivalence of norms== {{See also|Equivalent norms}} For any two matrix norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math>, we have that: :<math>r\|A\|_\alpha\leq\|A\|_\beta\leq s\|A\|_\alpha</math> for some positive numbers ''r'' and ''s'', for all matrices <math>A\in K^{m \times n}</math>. In other words, all norms on <math>K^{m \times n}</math> are ''equivalent''; they induce the same [[topology (structure)|topology]] on <math>K^{m \times n}</math>. This is true because the vector space <math>K^{m \times n}</math> has the finite [[dimension (mathematics)|dimension]] <math>m \times n</math>. Moreover, for every matrix norm <math>\|\cdot\|</math> on <math>\R^{n\times n}</math> there exists a unique positive real number <math>k</math> such that <math>\ell\|\cdot\|</math> is a sub-multiplicative matrix norm for every <math>\ell \ge k</math>; to wit, :<math>k = \sup\{\Vert A B \Vert \,:\, \Vert A \Vert \leq 1, \Vert B \Vert \leq 1\}. </math> A sub-multiplicative matrix norm <math>\|\cdot\|_{\alpha}</math> is said to be ''minimal'', if there exists no other sub-multiplicative matrix norm <math>\|\cdot\|_{\beta}</math> satisfying <math>\|\cdot\|_{\beta} < \|\cdot\|_{\alpha}</math>. ===Examples of norm equivalence=== Let <math>\|A\|_p</math> once again refer to the norm induced by the vector ''p''-norm (as above in the Induced norm section). For matrix <math>A\in\R^{m\times n}</math> of [[Rank (linear algebra)|rank]] <math>r</math>, the following inequalities hold:<ref> [[Gene Golub|Golub, Gene]]; [[Charles Van Loan|Charles F. Van Loan]] (1996). Matrix Computations β Third Edition. Baltimore: The Johns Hopkins University Press, 56β57. {{ISBN|0-8018-5413-X}}.</ref><ref>Roger Horn and Charles Johnson. ''Matrix Analysis,'' Chapter 5, Cambridge University Press, 1985. {{ISBN|0-521-38632-2}}.</ref> *<math>\|A\|_2\le\|A\|_F\le\sqrt{r}\|A\|_2</math> *<math>\|A\|_F \le \|A\|_{*} \le \sqrt{r} \|A\|_F</math> *<math>\|A\|_{\max} \le \|A\|_2 \le \sqrt{mn}\|A\|_{\max}</math> *<math>\frac{1}{\sqrt{n}}\|A\|_\infty\le\|A\|_2\le\sqrt{m}\|A\|_\infty</math> *<math>\frac{1}{\sqrt{m}}\|A\|_1\le\|A\|_2\le\sqrt{n}\|A\|_1.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)