Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noether's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Example 1: Conservation of energy === Looking at the specific case of a Newtonian particle of mass ''m'', coordinate ''x'', moving under the influence of a potential ''V'', coordinatized by time ''t''. The [[action (physics)|action]], ''S'', is: :<math>\begin{align} \mathcal{S}[x] & = \int L\left[x(t),\dot{x}(t)\right] \, dt \\ & = \int \left(\frac m 2 \sum_{i=1}^3\dot{x}_i^2 - V(x(t))\right) \, dt. \end{align}</math> The first term in the brackets is the [[kinetic energy]] of the particle, while the second is its [[potential energy]]. Consider the generator of [[time translation]]s <math>Q = \frac{d}{dt}</math>. In other words, <math>Q[x(t)] = \dot{x}(t)</math>. The coordinate ''x'' has an explicit dependence on time, whilst ''V'' does not; consequently: :<math>Q[L] = \frac{d}{dt}\left[\frac{m}{2}\sum_i\dot{x}_i^2 - V(x)\right] = m \sum_i\dot{x}_i\ddot{x}_i - \sum_i\frac{\partial V(x)}{\partial x_i}\dot{x}_i </math> so we can set :<math>L = \frac{m}{2} \sum_i\dot{x}_i^2 - V(x).</math> Then, :<math>\begin{align} j & = \sum_{i=1}^3\frac{\partial L}{\partial \dot{x}_i}Q[x_i] - L \\ & = m \sum_i\dot{x}_i^2 - \left[\frac{m}{2}\sum_i\dot{x}_i^2 - V(x)\right] \\[3pt] & = \frac{m}{2}\sum_i\dot{x}_i^2 + V(x). \end{align}</math> The right hand side is the energy, and Noether's theorem states that <math>dj/dt = 0</math> (i.e. the principle of conservation of energy is a consequence of invariance under time translations). More generally, if the Lagrangian does not depend explicitly on time, the quantity :<math>\sum_{i=1}^3 \frac{\partial L}{\partial \dot{x}_i}\dot{x_i} - L</math> (called the [[Hamiltonian mechanics|Hamiltonian]]) is conserved. === Example 2: Conservation of center of momentum === Still considering 1-dimensional time, let :<math>\begin{align} \mathcal{S}\left[\vec{x}\right] & = \int \mathcal{L}\left[\vec{x}(t), \dot{\vec{x}}(t)\right] dt \\[3pt] & = \int \left[\sum^N_{\alpha=1} \frac{m_\alpha}{2}\left(\dot{\vec{x}}_\alpha\right)^2 - \sum_{\alpha<\beta} V_{\alpha\beta}\left(\vec{x}_\beta - \vec{x}_\alpha\right)\right] dt, \end{align}</math> for <math>N</math> Newtonian particles where the potential only depends pairwise upon the relative displacement. For <math>\vec{Q}</math>, consider the generator of Galilean transformations (i.e. a change in the frame of reference). In other words, :<math>Q_i\left[x^j_\alpha(t)\right] = t \delta^j_i.</math> And :<math>\begin{align} Q_i[\mathcal{L}] & = \sum_\alpha m_\alpha \dot{x}_\alpha^i - \sum_{\alpha<\beta}t \partial_i V_{\alpha\beta}\left(\vec{x}_\beta - \vec{x}_\alpha\right) \\ & = \sum_\alpha m_\alpha \dot{x}_\alpha^i. \end{align}</math> This has the form of <math display="inline">\frac{d}{dt}\sum_\alpha m_\alpha x^i_\alpha</math> so we can set :<math>\vec{f} = \sum_\alpha m_\alpha \vec{x}_\alpha.</math> Then, :<math>\begin{align} \vec{j} & = \sum_\alpha \left(\frac{\partial}{\partial \dot{\vec{x}}_\alpha} \mathcal{L}\right)\cdot\vec{Q}\left[\vec{x}_\alpha\right] - \vec{f} \\[6pt] & = \sum_\alpha \left(m_\alpha \dot{\vec{x}}_\alpha t - m_\alpha \vec{x}_\alpha\right) \\[3pt] & = \vec{P}t - M\vec{x}_{CM} \end{align}</math> where <math>\vec{P}</math> is the total momentum, ''M'' is the total mass and <math>\vec{x}_{CM}</math> is the center of mass. Noether's theorem states: :<math>\frac{d\vec{j}}{dt} = 0 \Rightarrow \vec{P} - M \dot{\vec{x}}_{CM} = 0.</math> === Example 3: Conformal transformation === Both examples 1 and 2 are over a 1-dimensional manifold (time). An example involving spacetime is a [[conformal transformation]] of a massless real scalar field with a [[Quartic interaction|quartic potential]] in (3 + 1)-[[Minkowski spacetime]]. :<math>\begin{align} \mathcal{S}[\varphi] & = \int \mathcal{L}\left[\varphi (x), \partial_\mu \varphi (x)\right] d^4 x \\[3pt] & = \int \left(\frac{1}{2}\partial^\mu \varphi \partial_\mu \varphi - \lambda \varphi^4\right) d^4 x \end{align}</math> For ''Q'', consider the generator of a spacetime rescaling. In other words, :<math>Q[\varphi(x)] = x^\mu\partial_\mu \varphi(x) + \varphi(x). </math> The second term on the right hand side is due to the "conformal weight" of <math>\varphi</math>. And :<math>Q[\mathcal{L}] = \partial^\mu\varphi\left(\partial_\mu\varphi + x^\nu\partial_\mu\partial_\nu\varphi + \partial_\mu\varphi\right) - 4\lambda\varphi^3\left(x^\mu\partial_\mu\varphi + \varphi\right).</math> This has the form of :<math>\partial_\mu\left[\frac{1}{2}x^\mu\partial^\nu\varphi\partial_\nu\varphi - \lambda x^\mu \varphi^4 \right] = \partial_\mu\left(x^\mu\mathcal{L}\right)</math> (where we have performed a change of dummy indices) so set :<math>f^\mu = x^\mu\mathcal{L}.</math> Then :<math>\begin{align} j^\mu & = \left[\frac{\partial}{\partial(\partial_\mu\varphi)}\mathcal{L}\right]Q[\varphi]-f^\mu \\ & = \partial^\mu\varphi\left(x^\nu\partial_\nu\varphi + \varphi\right) - x^\mu\left(\frac 1 2 \partial^\nu\varphi\partial_\nu\varphi - \lambda\varphi^4\right). \end{align}</math> Noether's theorem states that <math>\partial_\mu j^\mu = 0</math> (as one may explicitly check by substituting the Euler–Lagrange equations into the left hand side). If one tries to find the [[Ward–Takahashi identity|Ward–Takahashi]] analog of this equation, one runs into a problem because of [[anomaly (physics)|anomalies]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)