Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nonlinear optics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Classical picture ==== In ''classical Maxwell electrodynamics'' a phase-conjugating mirror performs reversal of the [[Poynting vector]]: :<math>\mathbf{S}_\text{out}(\mathbf{r},t) = -\mathbf{S}_\text{in}(\mathbf{r},t),</math> ("in" means incident field, "out" means reflected field) where :<math>\mathbf{S}(\mathbf{r},t) = \epsilon_0 c^2 \mathbf{E}(\mathbf{r},t) \times \mathbf{B}(\mathbf{r},t),</math> which is a linear momentum density of electromagnetic field.<ref name="Okulov2008">{{cite journal |first=A. Yu. |last=Okulov |title=Angular momentum of photons and phase conjugation |journal=J. Phys. B: At. Mol. Opt. Phys. |volume=41 |issue=10 |pages=101001 |date=2008 |doi=10.1088/0953-4075/41/10/101001 |arxiv=0801.2675}}</ref> In the same way a phase-conjugated wave has an opposite angular momentum density vector <math> \mathbf{L}(\mathbf{r},t) = \mathbf{r} \times \mathbf{S}(\mathbf{r},t) </math> with respect to incident field:<ref name="Okulov2008J">{{cite journal |first=A. Yu. |last=Okulov |title=Optical and Sound Helical structures in a Mandelstam–Brillouin mirror |journal=JETP Lett. |volume=88 |issue=8 |pages=561–566 |date=2008 |doi=10.1134/S0021364008200046 }}</ref> :<math>\mathbf{L}_\text{out}(\mathbf{r},t) = -\mathbf{L}_\text{in}(\mathbf{r},t).</math> The above identities are valid ''locally'', i.e. in each space point <math>\mathbf{r}</math> in a given moment <math>t</math> for an ''ideal phase-conjugating mirror''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)