Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nth root
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Solving polynomials== {{see also|Root-finding algorithms}} It was once [[conjecture]]d that all [[polynomial equation]]s could be [[Algebraic solution|solved algebraically]] (that is, that all roots of a [[polynomial]] could be expressed in terms of a finite number of radicals and [[elementary arithmetic|elementary operations]]). However, while this is true for third degree polynomials ([[cubic function|cubics]]) and fourth degree polynomials ([[quartic function|quartics]]), the [[Abel–Ruffini theorem]] (1824) shows that this is not true in general when the degree is 5 or greater. For example, the solutions of the equation <math display="block">x^5 = x + 1</math> cannot be expressed in terms of radicals. (''cf.'' [[quintic equation]])
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)