Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Octal
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Real numbers== ===Fractions=== Due to having only factors of two, many octal fractions have repeating digits, although these tend to be fairly simple: {|class="wikitable" | colspan="3" align="center" | Decimal base<br><SMALL>Prime factors of the base: <span style="color:Green">'''2'''</span>, <span style="color:Green">'''5'''</span></SMALL><br><SMALL>Prime factors of one below the base: <span style="color:Blue">'''3'''</span></SMALL><br><SMALL>Prime factors of one above the base: <span style="color:Magenta">'''11'''</span></SMALL><br><SMALL>Other Prime factors: <span style="color:Red">'''7 13 17 19 23 29 31'''</span></SMALL> | colspan="3" align="center" | '''Octal base'''<br><SMALL>Prime factors of the base: <span style="color:Green">'''2'''</span></SMALL><br><SMALL>Prime factors of one below the base: <span style="color:Blue">'''7'''</span></SMALL><br><SMALL>Prime factors of one above the base: <span style="color:Magenta">'''3'''</span></SMALL><br><SMALL>Other Prime factors: <span style="color:Red">'''5 13 15 21 23 27 35 37'''</span></SMALL> |- | align="center" | Fraction | align="center" | <SMALL>Prime factors<br>of the denominator</SMALL> | align="center" | Positional representation | align="center" | Positional representation | align="center" | <SMALL>Prime factors<br>of the denominator</SMALL> | align="center" | Fraction |- | align="center" | 1/2 | align="center" | <span style="color:Green">'''2'''</span> | '''0.5''' | '''0.4''' | align="center" | <span style="color:Green">'''2'''</span> | align="center" | 1/2 |- | align="center" | 1/3 | align="center" | <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.'''3333... = '''0.'''{{overline|3}} | bgcolor=#c0c0c0 | '''0.'''2525... = '''0.'''{{overline|25}} | align="center" | <span style="color:Magenta">'''3'''</span> | align="center" | 1/3 |- | align="center" | 1/4 | align="center" | <span style="color:Green">'''2'''</span> | '''0.25''' | '''0.2''' | align="center" | <span style="color:Green">'''2'''</span> | align="center" | 1/4 |- | align="center" | 1/5 | align="center" | <span style="color:Green">'''5'''</span> | '''0.2''' | bgcolor=#c0c0c0 | '''0.'''{{overline|1463}} | align="center" | <span style="color:Red">'''5'''</span> | align="center" | 1/5 |- | align="center" | 1/6 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.1'''{{overline|6}} | bgcolor=#c0c0c0 | '''0.1'''{{overline|25}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Magenta">'''3'''</span> | align="center" | 1/6 |- | align="center" | 1/7 | align="center" | <span style="color:Red">'''7'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|142857}} | bgcolor=#c0c0c0 | '''0.'''{{overline|1}} | align="center" | <span style="color:Blue">'''7'''</span> | align="center" | 1/7 |- | align="center" | 1/8 | align="center" | <span style="color:Green">'''2'''</span> | '''0.125''' | '''0.1''' | align="center" | <span style="color:Green">'''2'''</span> | align="center" | 1/10 |- | align="center" | 1/9 | align="center" | <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|1}} | bgcolor=#c0c0c0 | '''0.'''{{overline|07}} | align="center" | <span style="color:Magenta">'''3'''</span> | align="center" | 1/11 |- | align="center" | 1/10 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Green">'''5'''</span> | '''0.1''' | bgcolor=#c0c0c0 | '''0.0'''{{overline|6314}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''5'''</span> | align="center" | 1/12 |- | align="center" | 1/11 | align="center" | <span style="color:Magenta">'''11'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|09}} | bgcolor=#c0c0c0 | '''0.'''{{overline|0564272135}} | align="center" | <span style="color:Red">'''13'''</span> | align="center" | 1/13 |- | align="center" | 1/12 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.08'''{{overline|3}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|52}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Magenta">'''3'''</span> | align="center" | 1/14 |- | align="center" | 1/13 | align="center" | <span style="color:Red">'''13'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|076923}} | bgcolor=#c0c0c0 | '''0.'''{{overline|0473}} | align="center" | <span style="color:Red">'''15'''</span> | align="center" | 1/15 |- | align="center" | 1/14 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''7'''</span> | bgcolor=#c0c0c0 | '''0.0'''{{overline|714285}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|4}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''7'''</span> | align="center" | 1/16 |- | align="center" | 1/15 | align="center" | <span style="color:Blue">'''3'''</span>, <span style="color:Green">'''5'''</span> | bgcolor=#c0c0c0 | '''0.0'''{{overline|6}} | bgcolor=#c0c0c0 | '''0.'''{{overline|0421}} | align="center" | <span style="color:Magenta">'''3'''</span>, <span style="color:Red">'''5'''</span> | align="center" | 1/17 |- | align="center" | 1/16 | align="center" | <span style="color:Green">'''2'''</span> | '''0.0625''' | '''0.04''' | align="center" | <span style="color:Green">'''2'''</span> | align="center" | 1/20 |- | align="center" | 1/17 | align="center" | <span style="color:Red">'''17'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|0588235294117647}} | bgcolor=#c0c0c0 | '''0.'''{{overline|03607417}} | align="center" | <span style="color:Red">'''21'''</span> | align="center" | 1/21 |- | align="center" | 1/18 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.0'''{{overline|5}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|34}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Magenta">'''3'''</span> | align="center" | 1/22 |- | align="center" | 1/19 | align="center" | <span style="color:Red">'''19'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|052631578947368421}} | bgcolor=#c0c0c0 | '''0.'''{{overline|032745}} | align="center" | <span style="color:Red">'''23'''</span> | align="center" | 1/23 |- | align="center" | 1/20 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Green">'''5'''</span> | '''0.05''' | bgcolor=#c0c0c0 | '''0.0'''{{overline|3146}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''5'''</span> | align="center" | 1/24 |- | align="center" | 1/21 | align="center" | <span style="color:Blue">'''3'''</span>, <span style="color:Red">'''7'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|047619}} | bgcolor=#c0c0c0 | '''0.'''{{overline|03}} | align="center" | <span style="color:Magenta">'''3'''</span>, <span style="color:Blue">'''7'''</span> | align="center" | 1/25 |- | align="center" | 1/22 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Magenta">'''11'''</span> | bgcolor=#c0c0c0 | '''0.0'''{{overline|45}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|2721350564}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''13'''</span> | align="center" | 1/26 |- | align="center" | 1/23 | align="center" | <span style="color:Red">'''23'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|0434782608695652173913}} | bgcolor=#c0c0c0 | '''0.'''{{overline|02620544131}} | align="center" | <span style="color:Red">'''27'''</span> | align="center" | 1/27 |- | align="center" | 1/24 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.041'''{{overline|6}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|25}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Magenta">'''3'''</span> | align="center" | 1/30 |- | align="center" | 1/25 | align="center" | <span style="color:Green">'''5'''</span> | '''0.04''' | bgcolor=#c0c0c0 | '''0.'''{{overline|02436560507534121727}} | align="center" | <span style="color:Red">'''5'''</span> | align="center" | 1/31 |- | align="center" | 1/26 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''13'''</span> | bgcolor=#c0c0c0 | '''0.0'''{{overline|384615}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|2354}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''15'''</span> | align="center" | 1/32 |- | align="center" | 1/27 | align="center" | <span style="color:Blue">'''3'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|037}} | bgcolor=#c0c0c0 | '''0.'''{{overline|022755}} | align="center" | <span style="color:Magenta">'''3'''</span> | align="center" | 1/33 |- | align="center" | 1/28 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Red">'''7'''</span> | bgcolor=#c0c0c0 | '''0.03'''{{overline|571428}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|2}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''7'''</span> | align="center" | 1/34 |- | align="center" | 1/29 | align="center" | <span style="color:Red">'''29'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|0344827586206896551724137931}} | bgcolor=#c0c0c0 | '''0.'''{{overline|0215173454106475626043236713}} | align="center" | <span style="color:Red">'''35'''</span> | align="center" | 1/35 |- | align="center" | 1/30 | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Blue">'''3'''</span>, <span style="color:Green">'''5'''</span> | bgcolor=#c0c0c0 | '''0.0'''{{overline|3}} | bgcolor=#c0c0c0 | '''0.0'''{{overline|2104}} | align="center" | <span style="color:Green">'''2'''</span>, <span style="color:Magenta">'''3'''</span>, <span style="color:Red">'''5'''</span> | align="center" | 1/36 |- | align="center" | 1/31 | align="center" | <span style="color:Red">'''31'''</span> | bgcolor=#c0c0c0 | '''0.'''{{overline|032258064516129}} | bgcolor=#c0c0c0 | '''0.'''{{overline|02041}} | align="center" | <span style="color:Red">'''37'''</span> | align="center" | 1/37 |- | align="center" | 1/32 | align="center" | <span style="color:Green">'''2'''</span> | '''0.03125''' | '''0.02''' | align="center" | <span style="color:Green">'''2'''</span> | align="center" | 1/40 |} ===Irrational numbers=== The table below gives the expansions of some common [[irrational number]]s in decimal and octal. {| class="wikitable" ! rowspan=2 | Number ! colspan=2 | Positional representation |- ! Decimal ! Octal |- | [[Square root of 2|{{sqrt|2}}]] {{small|(the length of the [[diagonal]] of a unit [[Square (geometry)|square]])}} | {{val|1.414213562373095048}}... | 1.3240 4746 3177 1674... |- | [[Square root of 3|{{sqrt|3}}]] {{small|(the length of the diagonal of a unit [[cube]])}} | {{val|1.732050807568877293}}... | 1.5666 3656 4130 2312... |- | [[Square root of 5|{{sqrt|5}}]] {{small|(the length of the [[diagonal]] of a 1Γ2 [[rectangle]])}} | {{val|2.236067977499789696}}... | 2.1706 7363 3457 7224... |- | {{mvar|[[Golden ratio|Ο]]}} {{small|1=(phi, the [[golden ratio]] = {{math|(1+{{radical|5}})/2}})}} | {{val|1.618033988749894848}}... | 1.4743 3571 5627 7512... |- | {{mvar|[[Pi|Ο]]}} {{small|(pi, the ratio of [[circumference]] to [[diameter]] of a circle)}} | {{val|3.141592653589793238462643}}<br>{{val|383279502884197169399375105}}... | 3.1103 7552 4210 2643... |- | {{mvar|[[E (mathematical constant)|e]]}} {{small|(the base of the [[natural logarithm]])}} | {{val|2.718281828459045235}}... | 2.5576 0521 3050 5355... |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)