Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plate tectonics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition and refining of the theory === After all these considerations, plate tectonics (or, as it was initially called "New Global Tectonics") became quickly accepted and numerous papers followed that defined the concepts: * In 1965, [[Tuzo Wilson]] who had been a promoter of the sea floor spreading hypothesis and continental drift from the very beginning{{sfn|Wilson|1963}} added the concept of [[transform fault]]s to the model, completing the classes of fault types necessary to make the mobility of the plates on the globe work out.{{sfn|Wilson|1965}} * A symposium on continental drift was held at the Royal Society of London in 1965 which must be regarded as the official start of the acceptance of plate tectonics by the scientific community, and which abstracts are issued as {{Harvtxt|Blackett|Bullard|Runcorn|1965}}. In this symposium, [[Edward Bullard]] and co-workers showed with a computer calculation how the continents along both sides of the Atlantic would best fit to close the ocean, which became known as the famous "Bullard's Fit". * In 1966 Wilson published the paper that referred to previous plate tectonic reconstructions, introducing the concept of what became known as the "[[Wilson Cycle]]".{{sfn|Wilson|1966}} * In 1967, at the [[American Geophysical Union]]'s meeting, [[W. Jason Morgan]] proposed that Earth's surface consists of 12 rigid plates that move relative to each other.{{sfn|Morgan|1968}} * Two months later, [[Xavier Le Pichon]] published a complete model based on six major plates with their relative motions, which marked the final acceptance by the scientific community of plate tectonics.{{sfn|Le Pichon|1968}} * In the same year, [[Dan McKenzie (geophysicist)|McKenzie]] and [[Robert Ladislav Parker|Parker]] independently presented a model similar to Morgan's using translations and rotations on a sphere to define the plate motions.{{sfn|McKenzie|Parker|1967}} * From that moment onwards, discussions have been focusing on the relative role of the forces driving plate tectonics, in order to evolve from a kinematic concept into a dynamic theory.<ref>Tharp M (1982) Mapping the ocean floor—1947 to 1977. In: The ocean floor: Bruce Heezen commemorative volume, pp. 19–31. New York: Wiley.</ref> Initially these concepts were focused on mantle convection, in the footsteps of A. Holmes, and also introduced the importance of the gravitational pull of subducted slabs through the works of Elsasser, Solomon, Sleep, Uyeda and Turcotte. Other authors evoked external driving forces due to the tidal drag of the Moon and other celestial bodies, and, especially since 2000, with the emergence of computational models reproducing Earth's mantle behaviour to first order,<ref>{{Cite journal |last1=Coltice |first1=Nicolas |last2=Gérault |first2=Mélanie |last3=Ulvrová |first3=Martina |date=2017 |title=A mantle convection perspective on global tectonics |journal=Earth-Science Reviews |volume=165 |pages=120–150 |bibcode=2017ESRv..165..120C |doi=10.1016/j.earscirev.2016.11.006}}</ref><ref>{{Cite journal |last=Bercovici |first=David |date=2003 |title=The generation of plate tectonics from mantle convection |journal=Earth and Planetary Science Letters |volume=205 |issue=3–4 |pages=107–121 |bibcode=2003E&PSL.205..107B |doi=10.1016/S0012-821X(02)01009-9}}</ref> following upon the older unifying concepts of van Bemmelen, authors re-evaluated the important role of mantle dynamics.<ref>{{Cite journal |last1=Crameri |first1=Fabio |last2=Conrad |first2=Clinton P. |last3=Montési |first3=Laurent |last4=Lithgow-Bertelloni |first4=Carolina R. |date=2019 |title=The dynamic life of an oceanic plate |journal=Tectonophysics |volume=760 |pages=107–135 |bibcode=2019Tectp.760..107C |doi=10.1016/j.tecto.2018.03.016|hdl=10852/72186 |hdl-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)