Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propagator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Graviton propagator=== The graviton propagator for [[Minkowski space]] in [[general relativity]] is <ref>[https://dspace.library.uu.nl/bitstream/handle/1874/4837/Quantum_theory_of_gravitation.pdf?sequence=2&isAllowed=y Quantum theory of gravitation] library.uu.nl</ref> <math display="block">G_{\alpha\beta~\mu\nu} = \frac{\mathcal{P}^2_{\alpha\beta~\mu\nu}}{k^2} - \frac{\mathcal{P}^0_s{}_{\alpha\beta~\mu\nu}}{2k^2} = \frac{g_{\alpha\mu} g_{\beta\nu}+ g_{\beta\mu}g_{\alpha\nu}- \frac{2}{D-2} g_{\mu\nu}g_{\alpha\beta}}{k^2},</math> where <math>D</math> is the number of spacetime dimensions, <math>\mathcal{P}^2</math> is the transverse and traceless [[Spin (physics)#Spin projection quantum number and multiplicity|spin-2 projection operator]] and <math>\mathcal{P}^0_s</math> is a spin-0 scalar [[multiplet]]. The graviton propagator for [[Anti-de Sitter space|(Anti) de Sitter space]] is <math display="block">G = \frac{\mathcal{P}^2}{2H^2-\Box} + \frac{\mathcal{P}^0_s}{2(\Box+4H^2)},</math> where <math>H</math> is the [[Hubble's law|Hubble constant]]. Note that upon taking the limit <math>H \to 0</math> and <math>\Box \to -k^2</math>, the AdS propagator reduces to the Minkowski propagator.<ref>{{cite web| url=https://cds.cern.ch/record/378516/files/9902042.pdf |title=Graviton and gauge boson propagators in AdSd+1}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)