Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ratio test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Tong's modification of Kummer's test=== A new version of Kummer's test was established by Tong.<ref name="Tong1994"/> See also <ref name="Samelson1995"/><ref name="Duris2018"/><ref name="Abramov2021">{{cite arXiv |last1=Abramov |first1=Vyacheslav, M. |date= 21 June 2021 |title=A simple proof of Tong's theorem |eprint=2106.13808 |class=math.HO }}</ref> for further discussions and new proofs. The provided modification of Kummer's theorem characterizes all positive series, and the convergence or divergence can be formulated in the form of two necessary and sufficient conditions, one for convergence and another for divergence. * Series <math>\sum_{n=1}^\infty a_n</math> converges if and only if there exists a positive sequence <math>\zeta_n</math>, <math>n=1,2,\dots</math>, such that <math>\zeta_n\frac{a_n}{a_{n+1}}-\zeta_{n+1}\geq c>0.</math> * Series <math>\sum_{n=1}^\infty a_n</math> diverges if and only if there exists a positive sequence <math>\zeta_n</math>, <math>n=1,2,\dots</math>, such that <math>\zeta_n\frac{a_n}{a_{n+1}}-\zeta_{n+1}\leq0,</math> and <math>\sum_{n=1}^{\infty}\frac{1}{\zeta_n}=\infty.</math> The first of these statements can be simplified as follows:<ref name="Abramov2022"> {{cite journal |last1=Abramov |first1=Vyacheslav M.|date=May 2022|title=Evaluating the sum of convergent positive series|url=http://elib.mi.sanu.ac.rs/files/journals/publ/131/publn131p41-53.pdf | journal=Publications de l'Institut Mathématique |series=Nouvelle Série |volume=111 |issue=125 |pages=41–53 |doi=10.2298/PIM2225041A|s2cid=237499616 }}</ref> * Series <math>\sum_{n=1}^\infty a_n</math> converges if and only if there exists a positive sequence <math>\zeta_n</math>, <math>n=1,2,\dots</math>, such that <math>\zeta_n\frac{a_n}{a_{n+1}}-\zeta_{n+1}=1.</math> The second statement can be simplified similarly: * Series <math>\sum_{n=1}^\infty a_n</math> diverges if and only if there exists a positive sequence <math>\zeta_n</math>, <math>n=1,2,\dots</math>, such that <math>\zeta_n\frac{a_n}{a_{n+1}}-\zeta_{n+1}=0,</math> and <math>\sum_{n=1}^{\infty}\frac{1}{\zeta_n}=\infty.</math> However, it becomes useless, since the condition <math>\sum_{n=1}^{\infty}\frac{1}{\zeta_n}=\infty</math> in this case reduces to the original claim <math>\sum_{n=1}^{\infty}a_n=\infty.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)