Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Refractive index
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relative permittivity and permeability=== The refractive index of electromagnetic radiation equals <math display="block">n = \sqrt{\varepsilon_\mathrm{r} \mu_\mathrm{r}},</math> where {{math|''ε''{{sub|r}}}} is the material's [[relative permittivity]], and {{math|''μ''{{sub|r}}}} is its [[Permeability (electromagnetism)|relative permeability]].<ref name = bleaney>{{cite book | last1 = Bleaney| first1 = B.| author-link1 = Brebis Bleaney |last2 = Bleaney |first2 = B.I. | title = Electricity and Magnetism | publisher = [[Oxford University Press]] | edition = Third | date = 1976 | isbn = 978-0-19-851141-0 }}</ref>{{rp|229}} The refractive index is used for optics in [[Fresnel equations]] and [[Snell's law]]; while the relative permittivity and permeability are used in [[Maxwell's equations]] and electronics. Most naturally occurring materials are non-magnetic at optical frequencies, that is {{math|''μ''{{sub|r}}}} is very close to 1, therefore {{mvar|n}} is approximately {{math|{{sqrt|''ε''{{sub|r}}}}}}.<ref>{{cite book |last1=Andrews |first1=David L. |title=Photonics, Volume 2: Nanophotonic Structures and Materials |date=24 February 2015 |publisher=John Wiley & Sons |isbn=978-1-118-22551-6 |page=54 |url=https://books.google.com/books?id=EYRVBgAAQBAJ |language=en}}</ref> In this particular case, the complex relative permittivity {{math|{{uu|''ε''}}{{sub|r}}}}, with real and imaginary parts {{math|''ε''{{sub|r}}}} and {{math|''ɛ̃''{{sub|r}}}}, and the complex refractive index {{math|{{uu|''n''}}}}, with real and imaginary parts {{mvar|n}} and {{mvar|κ}} (the latter called the "extinction coefficient"), follow the relation <math display="block">\underline{\varepsilon}_\mathrm{r} = \varepsilon_\mathrm{r} + i\tilde{\varepsilon}_\mathrm{r} = \underline{n}^2 = (n + i\kappa)^2,</math> and their components are related by:<ref>{{cite book|first=Frederick|last=Wooten|title=Optical Properties of Solids|page=49|publisher=[[Academic Press]]|location=New York City|year= 1972|isbn=978-0-12-763450-0}}[http://www.lrsm.upenn.edu/~frenchrh/download/0208fwootenopticalpropertiesofsolids.pdf (online pdf)] {{webarchive|url=https://web.archive.org/web/20111003034948/http://www.lrsm.upenn.edu/~frenchrh/download/0208fwootenopticalpropertiesofsolids.pdf |date=2011-10-03 }}</ref> <math display="block">\begin{align} \varepsilon_\mathrm{r} &= n^2 - \kappa^2\,, \\ \tilde{\varepsilon}_\mathrm{r} &= 2n\kappa\,, \end{align}</math> and: <math display="block">\begin{align} n &= \sqrt{\frac{|\underline{\varepsilon}_\mathrm{r}| + \varepsilon_\mathrm{r}}{2}}, \\ \kappa &= \sqrt{\frac{|\underline{\varepsilon}_\mathrm{r}| - \varepsilon_\mathrm{r}}{2}}. \end{align}</math> where <math>|\underline{\varepsilon}_\mathrm{r}| = \sqrt{\varepsilon_\mathrm{r}^2 + \tilde{\varepsilon}_\mathrm{r}^2}</math> is the [[modulus of complex number|complex modulus]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)