Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Selenium
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Solar cells=== Selenium was used as the photoabsorbing layer in the first solid-state solar cell, which was demonstrated by the English physicist [[William Grylls Adams]] and his student Richard Evans Day in 1876.<ref>{{cite journal |last1=Adams |first1=William Grylls |last2=Day |first2=Richard Evans |title=The Action of Light on Selenium |journal=Philosophical Transactions of the Royal Society of London |date=1877 |volume=167 |pages=313β349|bibcode=1877RSPT..167..313A }}</ref> Only a few years later, [[Charles Fritts]] fabricated the first thin-film solar cell, also using selenium as the photoabsorber. However, with the emergence of silicon solar cells in the 1950s, research on selenium thin-film solar cells declined. As a result, the record efficiency of 5.0% demonstrated by Tokio Nakada and Akio Kunioka in 1985 remained unchanged for more than 30 years.<ref>{{cite journal |last1=Nakada |first1=Tokio |last2=Kunioka |first2=Akio |title=Polycrystalline Thin-Film TiO 2 /Se Solar Cells |journal=Japanese Journal of Applied Physics |date=1 July 1985 |volume=24 |issue=7A |pages=L536 |doi=10.1143/JJAP.24.L536|bibcode=1985JaJAP..24L.536N |s2cid=118838432 }}</ref> In 2017, researchers from [[IBM]] achieved a new record efficiency of 6.5% by redesigning the device structure.<ref>{{cite journal |last1=Todorov |first1=Teodor K. |last2=Singh |first2=Saurabh |last3=Bishop |first3=Douglas M. |last4=Gunawan |first4=Oki |last5=Lee |first5=Yun Seog |last6=Gershon |first6=Talia S. |last7=Brew |first7=Kevin W. |last8=Antunez |first8=Priscilla D. |last9=Haight |first9=Richard |title=Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material |journal=Nature Communications |date=25 September 2017 |volume=8 |issue=1 |page=682 |doi=10.1038/s41467-017-00582-9|pmid=28947765 |pmc=5613033 |bibcode=2017NatCo...8..682T }}</ref> Following this achievement, selenium has gained renewed interest as a wide bandgap photoabsorber with the potential of being integrated in [[Multi-junction solar cell|tandem]] with lower bandgap photoabsorbers.<ref>{{cite journal |last1=Youngman |first1=Tomas H. |last2=Nielsen |first2=Rasmus |last3=Crovetto |first3=Andrea |last4=Seger |first4=Brian |last5=Hansen |first5=Ole |last6=Chorkendorff |first6=Ib |last7=Vesborg |first7=Peter C. K. |title=Semitransparent Selenium Solar Cells as a Top Cell for Tandem Photovoltaics |journal=Solar RRL |date=July 2021 |volume=5 |issue=7 |doi=10.1002/solr.202100111|s2cid=235575161 }}</ref> In 2024, the first selenium-based tandem solar cell was demonstrated, showcasing a selenium top cell monolithically integrated with a silicon bottom cell.<ref>{{cite journal |last1=Nielsen |first1=Rasmus |last2=Crovetto |first2=Andrea |last3=Assar |first3=Alireza |last4=Hansen |first4=Ole |last5=Chorkendorff |first5=Ib |last6=Vesborg |first6=Peter C.K. |title=Monolithic Selenium/Silicon Tandem Solar Cells |journal=PRX Energy |date=12 March 2024 |volume=3 |issue=1 |page=013013 |doi=10.1103/PRXEnergy.3.013013|arxiv=2307.05996 |bibcode=2024PRXE....3a3013N }}</ref> However, a significant deficit in the [[open-circuit voltage]] is currently the main limiting factor to further improve the efficiency, necessitating defect-engineering strategies for selenium thin-films to enhance the [[carrier lifetime]].<ref>{{cite journal |last1=Nielsen |first1=Rasmus |last2=Youngman |first2=Tomas H. |last3=Moustafa |first3=Hadeel |last4=Levcenco |first4=Sergiu |last5=Hempel |first5=Hannes |last6=Crovetto |first6=Andrea |last7=Olsen |first7=Thomas |last8=Hansen |first8=Ole |last9=Chorkendorff |first9=Ib |last10=Unold |first10=Thomas |last11=Vesborg |first11=Peter C. K. |title=Origin of photovoltaic losses in selenium solar cells with open-circuit voltages approaching 1 V |journal=Journal of Materials Chemistry A |date=2022 |volume=10 |issue=45 |pages=24199β24207 |doi=10.1039/D2TA07729A|s2cid=253315416 }}</ref><ref>{{Cite journal |last1=Nielsen |first1=Rasmus S. |last2=Gunawan |first2=Oki |last3=Todorov |first3=Teodor |last4=MΓΈller |first4=Clara B. |last5=Hansen |first5=Ole |last6=Vesborg |first6=Peter C. K. |date=3 April 2025 |title=Variable-temperature and carrier-resolved photo-Hall measurements of high-performance selenium thin-film solar cells |journal=Physical Review B |volume=111 |issue=16 |pages=165202 |doi=10.1103/PhysRevB.111.165202 |arxiv=2409.12804 |bibcode=2025PhRvB.111p5202N |issn=2469-9950}}</ref> As of now, the only defect-engineering strategy that has been investigated for selenium thin-film solar cells involves [[Laser-heated pedestal growth|crystallizing selenium using a laser]].<ref>{{cite journal |last1=Nielsen |first1=Rasmus |last2=Hemmingsen |first2=Tobias H. |last3=Bonczyk |first3=Tobias G. |last4=Hansen |first4=Ole |last5=Chorkendorff |first5=Ib |last6=Vesborg |first6=Peter C. K. |title=Laser-Annealing and Solid-Phase Epitaxy of Selenium Thin-Film Solar Cells |journal=ACS Applied Energy Materials |date=11 September 2023 |volume=6 |issue=17 |pages=8849β8856 |doi=10.1021/acsaem.3c01464|arxiv=2306.11311 |s2cid=259203956 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)