Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectrum (functional analysis)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Spectrum of the adjoint operator== Let ''X'' be a Banach space and <math>T:\,X\to X</math> a [[unbounded operator#Closed linear operators|closed linear operator]] with dense domain <math>D(T)\subset X</math>. If ''X*'' is the dual space of ''X'', and <math>T^*:\, X^* \to X^*</math> is the [[hermitian adjoint]] of ''T'', then :<math>\sigma(T^*) = \overline{\sigma(T)} := \{z\in\Complex : \bar{z}\in\sigma(T)\}.</math> {{math theorem|For a bounded (or, more generally, closed and densely defined) operator ''T'', :<math>\sigma_{\mathrm{cp}}(T) = \overline{\sigma_{\mathrm{p}}(T^*)}</math>. In particular, <math>\sigma_{\mathrm{r}}(T) \subset \overline{\sigma_{\mathrm{p}}(T^*)} \subset \sigma_{\mathrm{r}}(T)\cup\sigma_{\mathrm{p}}(T)</math>.}} {{Math proof|drop=hidden|proof= Suppose that <math>\mathrm{Ran}(T - \lambda I)</math> is not dense in ''X''. By the [[Hahn–Banach theorem]], there exists a non-zero <math>\varphi \in X^*</math> that vanishes on <math>\mathrm{Ran}(T - \lambda I)</math>. For all ''x'' ∈ ''X'', :<math>\langle\varphi, (T - \lambda I) x \rangle = \langle (T^* - \bar\lambda I) \varphi,x \rangle = 0.</math> Therefore, <math>(T^*-\bar\lambda I)\varphi= 0 \in X^*</math> and <math>\bar\lambda</math> is an eigenvalue of ''T*''. Conversely, suppose that <math>\bar\lambda</math> is an eigenvalue of ''T*''. Then there exists a non-zero <math>\varphi \in X^*</math> such that <math>(T^* - \bar{\lambda} I) \varphi = 0</math>, i.e. :<math>\forall x \in X,\; \langle (T^* - \bar{\lambda} I) \varphi, x \rangle = \langle \varphi,(T - \lambda I) x\rangle = 0.</math> If <math>\mathrm{Ran}(T-\lambda I)</math> is dense in ''X'', then ''φ'' must be the zero functional, a contradiction. The claim is proved. }} We also get <math>\sigma_{\mathrm{p}}(T)\subset\overline{\sigma_{\mathrm{r}}(T^*)\cup \sigma_{\mathrm{p}}(T^*)}</math> by the following argument: ''X'' embeds isometrically into ''X**''. Therefore, for every non-zero element in the kernel of <math>T-\lambda I</math> there exists a non-zero element in ''X**'' which vanishes on <math>\mathrm{Ran}(T^* - \bar{\lambda}I)</math>. Thus <math>\mathrm{Ran}(T^* -\bar{\lambda} I)</math> can not be dense. Furthermore, if ''X'' is reflexive, we have <math>\overline{\sigma_{\mathrm{r}}(T^*)}\subset\sigma_{\mathrm{p}}(T)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)