Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Student's t-distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==={{anchor|Three-parameter version|location-scale}}Location-scale {{mvar|t}} distribution=== ====Location-scale transformation==== Student's {{mvar|t}} distribution generalizes to the three parameter ''location-scale {{mvar|t}} distribution'' <math>\operatorname{\ell st}(\mu,\ \tau^2,\ \nu)\ </math> by introducing a [[location parameter]] <math>\ \mu\ </math> and a [[scale parameter]] <math>\ \tau ~.</math> With :<math>\ T \sim t_\nu\ </math> and [[location-scale family]] transformation :<math>\ X = \mu + \tau\ T\ </math> we get :<math>\ X \sim \operatorname{\ell st}(\mu,\ \tau^2,\ \nu) ~.</math> The resulting distribution is also called the ''non-standardized Student's {{mvar|t}} distribution''. ====Density and first two moments==== The location-scale {{mvar|t}} distribution has a density defined by:<ref name="Jackman">{{cite book |title=Bayesian Analysis for the Social Sciences |url=https://archive.org/details/bayesianmodeling00jack |url-access=limited |author=Jackman, S. |series=Wiley Series in Probability and Statistics |publisher=Wiley |year=2009 |isbn=9780470011546 |page=[https://archive.org/details/bayesianmodeling00jack/page/n542 507] |doi=10.1002/9780470686621}}</ref> :<math>p(x\mid \nu,\mu,\tau) = \frac{\Gamma \left(\frac{\nu + 1}{2} \right)}{\Gamma\left( \frac{\nu}{2}\right) \tau \sqrt{\pi \nu}} \left(1 + \frac{1}{\nu} \left(\frac{x-\mu}{\tau} \right)^2 \right)^{-(\nu+1)/2}</math> Equivalently, the density can be written in terms of <math>\tau^2</math>: :<math>\ p(x \mid \nu, \mu, \tau^2) = \frac{\Gamma( \frac{\nu + 1}{2})}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi \nu \tau^2}} \left(1 + \frac{1}{ \nu } \frac{(x - \mu)^2}{\tau^2} \right)^{-(\nu+1)/2}</math> Other properties of this version of the distribution are:<ref name=Jackman/> :<math>\begin{align} \operatorname{\mathbb E}\{\ X\ \} &= \mu & \text{ for } \nu > 1\ ,\\ \operatorname{var}\{\ X\ \} &= \tau^2\frac{\nu}{\nu-2} & \text{ for } \nu > 2\ ,\\ \operatorname{mode}\{\ X\ \} &= \mu ~. \end{align} </math> ====Special cases==== * If <math>\ X\ </math> follows a location-scale {{mvar|t}} distribution <math>\ X \sim \operatorname{\ell st}\left(\mu,\ \tau^2,\ \nu\right)\ </math> then for <math>\ \nu \rightarrow \infty\ </math> <math>\ X\ </math> is normally distributed <math>X \sim \mathrm{N}\left(\mu, \tau^2\right)</math> with mean <math>\mu</math> and variance <math>\ \tau^2 ~.</math> * The location-scale {{mvar|t}} distribution <math>\ \operatorname{\ell st}\left(\mu,\ \tau^2,\ \nu=1 \right)\ </math> with degree of freedom <math>\nu=1</math> is equivalent to the [[Cauchy distribution]] <math>\mathrm{Cau}\left(\mu, \tau\right) ~.</math> * The location-scale {{mvar|t}} distribution <math>\operatorname{\ell st}\left(\mu=0,\ \tau^2=1,\ \nu\right)\ </math> with <math>\mu=0</math> and <math>\ \tau^2=1\ </math> reduces to the Student's {{mvar|t}} distribution <math>\ t_\nu ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)