Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
System of linear equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cramer's rule=== {{Main|Cramer's rule}} '''Cramer's rule''' is an explicit formula for the solution of a system of linear equations, with each variable given by a quotient of two [[determinant]]s.{{sfnp|Sterling|2009|p=[https://books.google.com/books?id=PsNJ1alC-bsC&pg=PA235 235]}} For example, the solution to the system :<math>\begin{alignat}{7} x &\; + &\; 3y &\; - &\; 2z &\; = &\; 5 \\ 3x &\; + &\; 5y &\; + &\; 6z &\; = &\; 7 \\ 2x &\; + &\; 4y &\; + &\; 3z &\; = &\; 8 \end{alignat}</math> is given by :<math> x=\frac {\, \begin{vmatrix}5&3&-2\\7&5&6\\8&4&3\end{vmatrix} \,} {\, \begin{vmatrix}1&3&-2\\3&5&6\\2&4&3\end{vmatrix} \,} ,\;\;\;\; y=\frac {\, \begin{vmatrix}1&5&-2\\3&7&6\\2&8&3\end{vmatrix} \,} {\, \begin{vmatrix}1&3&-2\\3&5&6\\2&4&3\end{vmatrix} \,} ,\;\;\;\; z=\frac {\, \begin{vmatrix}1&3&5\\3&5&7\\2&4&8\end{vmatrix} \,} {\, \begin{vmatrix}1&3&-2\\3&5&6\\2&4&3\end{vmatrix} \,}. </math> For each variable, the denominator is the determinant of the [[matrix of coefficients]], while the numerator is the determinant of a matrix in which one column has been replaced by the vector of constant terms. Though Cramer's rule is important theoretically, it has little practical value for large matrices, since the computation of large determinants is somewhat cumbersome. (Indeed, large determinants are most easily computed using row reduction.) Further, Cramer's rule has very poor numerical properties, making it unsuitable for solving even small systems reliably, unless the operations are performed in rational arithmetic with unbounded precision.{{Citation needed|date=March 2017}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)