Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Taylor's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Alternate proof for Taylor's theorem in one real variable === Let <math>f(x)</math> be any real-valued continuous function to be approximated by the Taylor polynomial. Step 1: Let <math display="inline">F</math> and <math display="inline">G</math> be functions. Set <math display="inline">F</math> and <math display="inline">G</math> to be <math display="block">\begin{align} F(x) = f(x) - \sum^{n-1}_{k=0} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \end{align}</math> <math display="block">\begin{align} G(x) = (x-a)^{n} \end{align}</math> Step 2: Properties of <math display="inline">F</math> and <math display="inline">G</math>: <math display="block">\begin{align} F(a) & = f(a) - f(a) - f'(a)(a - a) - ... - \frac{f^{(n-1)}(a)}{(n-1)!}(a-a)^{n-1} = 0 \\ G(a) & = (a-a)^n = 0 \end{align}</math> Similarly, <math display="block">\begin{align} F'(a) = f'(a) - f'(a) - \frac{f''(a)}{(2-1)!}(a-a)^{(2-1)} - ... - \frac{f^{(n-1)}(a)}{(n-2)!}(a-a)^{n-2} = 0 \end{align}</math> <math display="block">\begin{align} G'(a) &= n(a-a)^{n-1} = 0\\ &\qquad \vdots\\ G^{(n-1)}(a) &= F^{(n-1)}(a) = 0 \end{align}</math> Step 3: Use Cauchy Mean Value Theorem Let <math>f_{1}</math> and <math>g_{1}</math> be continuous functions on <math>[a, b]</math>. Since <math>a < x < b</math> so we can work with the interval <math>[a, x]</math>. Let <math>f_{1}</math> and <math>g_{1}</math> be differentiable on <math>(a, x)</math>. Assume <math>g_{1}'(x) \neq 0</math> for all <math>x \in (a, b)</math>. Then there exists <math>c_{1} \in (a, x)</math> such that <math display="block">\begin{align} \frac{f_{1}(x) - f_{1}(a)}{g_{1}(x) - g_{1}(a)} = \frac{f_{1}'(c_{1})}{g_{1}'(c_{1})} \end{align}</math> Note: <math>G'(x) \neq 0</math> in <math>(a, b)</math> and <math>F(a), G(a) = 0</math> so <math display="block">\begin{align} \frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(c_{1})}{G'(c_{1})} \end{align}</math> for some <math>c_{1} \in (a, x)</math>. This can also be performed for <math>(a, c_{1})</math>: <math display="block">\begin{align} \frac{F'(c_{1})}{G'(c_{1})} = \frac{F'(c_{1}) - F'(a)}{G'(c_{1}) - G'(a)} = \frac{F''(c_{2})}{G''(c_{2})} \end{align}</math> for some <math>c_{2} \in (a, c_{1})</math>. This can be continued to <math>c_{n}</math>. This gives a partition in <math>(a, b)</math>: <math display="block">a < c_{n} < c_{n-1} < \dots < c_{1} < x</math> with <math display="block">\frac{F(x)}{G(x)} = \frac{F'(c_{1})}{G'(c_{1})} = \dots = \frac{F^{(n)}(c_{n})}{G^{(n)}(c_{n})} .</math> Set <math>c = c_{n}</math>: <math display="block">\frac{F(x)}{G(x)} = \frac{F^{(n)}(c)}{G^{(n)}(c)}</math> Step 4: Substitute back <math display="block">\begin{align} \frac{F(x)}{G(x)} = \frac{f(x) - \sum^{n-1}_{k=0} \frac{f^{(k)}(a)}{k!}(x-a)^{k}}{(x-a)^{n}} = \frac{F^{(n)}(c)}{G^{(n)}(c)} \end{align}</math> By the Power Rule, repeated derivatives of <math>(x - a)^{n}</math>, <math>G^{(n)}(c) = n(n-1)...1</math>, so: <math display="block">\frac{F^{(n)}(c)}{G^{(n)}(c)} = \frac{f^{(n)}(c)}{n(n-1)\cdots1} = \frac{f^{(n)}(c)}{n!}.</math> This leads to: <math display="block">\begin{align} f(x) - \sum^{n-1}_{k=0} \frac{f^{(k)}(a)}{k!}(x-a)^{k} = \frac{f^{(n)}(c)}{n!}(x-a)^{n} \end{align}.</math> By rearranging, we get: <math display="block">\begin{align} f(x) = \sum^{n-1}_{k=0} \frac{f^{(k)}(a)}{k!}(x-a)^{k} + \frac{f^{(n)}(c)}{n!}(x-a)^{n} \end{align},</math> or because <math>c_{n} = a</math> eventually: <math display="block">f(x) = \sum^{n}_{k=0} \frac{f^{(k)}(a)}{k!}(x-a)^{k}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)